FACTOR
  Output
 
 

 

Output

The output of the program is stored in ASCII format in specified output file (for example, exop_output.txt). When the analysis finishes, this file is automatically loaded (except in some versions of the operating system). It can then be edited, saved or printed like any other text file.

We know show an abbreviated output of an analysis.


                                     F A C T O R   


                           Unrestricted Factor Analysis 

                                Release Version 10.4.01  x32bits
                                    April, 2016
                            Rovira i Virgili University
                                Tarragona, SPAIN

                                   Programming:
                               Urbano Lorenzo-Seva

                            Mathematical Specification:
                               Urbano Lorenzo-Seva
                                 Pere J. Ferrando

                            Date: Friday, October 21, 2016
                            Time: 9:37:58
--------------------------------------------------------------------------------

DETAILS OF ANALYSIS

Participants' scores data file                       : exop_with_missingdata.dat
Variable labels file                                 : exop_labels.txt
Method to handle missing values                      : Hot-Deck Multiple Imputation in Exploratory Factor Analysis (Lorenzo-Seva & Van Ginkel, 

2016)
Missing code value                                   : 999
Number of participants                               : 500
Number of participants without missing data          : 479
Number of variables                                  : 14
Variables included in the analysis                   : ALL
Variables excluded in the analysis                   : NONE
Number of factors                                    : 2
Number of second order factors                       : 0
Procedure for determining the number of dimensions   : Optimal implementation of Parallel Analysis (PA) (Timmerman, & Lorenzo-Seva, 2011)
Dispersion matrix                                    : Polychoric Correlations (Bayes modal estimation; Choi, Kim, Chen, & Dannels 2011)
Robust analyses                                      : Bootstrap on the basis of Percentile Method
Number of bootstrap samples                          : 500
Asymptotic Covariance/Variance matrix                : estimated using bootstrap sampling
Bootstrap confidence intervals                       :  95%
Method for factor extraction                         : Robust Diagonally Weighted Least Squares (RDWLS)
Correction for robust Chi square                     : Robust Mean-scaled
Rotation to user defined target                      : Semi-specified oblique Procrustes rotation (Browne, 1972b)
Number of random starts                              : 10
Maximum mumber of iterations                         : 100
Convergence value                                    : 0.00001000

--------------------------------------------------------------------------------

UNIVARIATE DESCRIPTIVES 

Variable                                        Mean       Confidence Interval     Variance   Skewness     Kurtosis
                                                           (95%)                                          (Zero centered)

1. Extraversion +                               2.985     (   2.88     3.09)       0.841     -0.118       -0.008
2. Extraversion +                               3.793     (   3.70     3.89)       0.627     -0.701        0.941
3. Extraversion -                               2.326     (   2.19     2.46)       1.259      0.551       -0.488
4. Extraversion +                               3.614     (   3.51     3.72)       0.834     -0.446       -0.054
5. Extraversion -                               3.591     (   3.48     3.70)       0.927     -0.217       -0.374
6. Extraversion -                               3.106     (   3.00     3.22)       0.905     -0.024       -0.381
7. Extraversion +                               3.322     (   3.22     3.42)       0.702     -0.236        0.331
8. Openness -                                   2.161     (   2.03     2.29)       1.154      0.680       -0.259
9. Openness +                                   4.614     (   4.55     4.68)       0.316     -1.267        1.392
10. Openness -                                  2.605     (   2.47     2.75)       1.433      0.343       -0.800
11. Openness +                                  3.524     (   3.41     3.64)       0.917     -0.411       -0.124
12. Openness +                                  4.497     (   4.42     4.58)       0.484     -1.630        3.816
13. Openness +                                  4.418     (   4.34     4.50)       0.444     -0.970        1.083
14. Openness -                                  1.868     (   1.75     1.99)       1.004      1.102        0.659

Polychoric correlation is advised when the univariate distributions of ordinal items are 
asymmetric or with excess of kurtosis. If both indices are lower than one in absolute value, 
then Pearson correlation is advised. You can read more about this subject in:

Muthén, B., & Kaplan D. (1985). A comparison of some methodologies for the factor analysis of non-normal Likert variables. British Journal of 

Mathematical and Statistical Psychology, 38, 171-189.
Muthén, B., & Kaplan D. (1992). A comparison of some methodologies for the factor analysis of non-normal Likert variables: A note on the size of 

the model. British Journal of Mathematical and Statistical Psychology, 45, 19-30.



BAR CHARTS FOR ORDINAL VARIABLES

Variable    1  

 Value     Freq
                |
     1      30  |  *****
     2      94  |  ****************
     3     229  |  ****************************************
     4     105  |  ******************
     5      21  |  ***
                +-----------+---------+---------+-----------+
                 0        57.3       114.5       171.8        229.0

Variable    2  

 Value     Freq
                |
     1       5  |  
     2      23  |  ***
     3     111  |  ****************
     4     267  |  ****************************************
     5      73  |  **********
                +-----------+---------+---------+-----------+
                 0        66.8       133.5       200.3        267.0

Variable    3  

 Value     Freq
                |
     1     132  |  *********************************
     2     156  |  ****************************************
     3     114  |  *****************************
     4      57  |  **************
     5      20  |  *****
                +-----------+---------+---------+-----------+
                 0        39.0       78.0       117.0        156.0

Variable    4  

 Value     Freq
                |
     1       8  |  *
     2      46  |  ********
     3     142  |  ***************************
     4     210  |  ****************************************
     5      73  |  *************
                +-----------+---------+---------+-----------+
                 0        52.5       105.0       157.5        210.0

Variable    5  

 Value     Freq
                |
     1       9  |  **
     2      43  |  *********
     3     177  |  ****************************************
     4     156  |  ***********************************
     5      94  |  *********************
                +-----------+---------+---------+-----------+
                 0        44.3       88.5       132.8        177.0

Variable    6  

 Value     Freq
                |
     1      19  |  ***
     2     105  |  *********************
     3     193  |  ****************************************
     4     130  |  **************************
     5      32  |  ******
                +-----------+---------+---------+-----------+
                 0        48.3       96.5       144.8        193.0

Variable    7  

 Value     Freq
                |
     1      12  |  **
     2      48  |  ********
     3     225  |  ****************************************
     4     162  |  ****************************
     5      32  |  *****
                +-----------+---------+---------+-----------+
                 0        56.3       112.5       168.8        225.0

Variable    8  

 Value     Freq
                |
     1     159  |  ****************************************
     2     155  |  **************************************
     3     108  |  ***************************
     4      43  |  **********
     5      14  |  ***
                +-----------+---------+---------+-----------+
                 0        39.8       79.5       119.3        159.0

Variable    9  

 Value     Freq
                |
     2       2  |  
     3      13  |  *
     4     153  |  *******************
     5     311  |  ****************************************
                +-----------+---------+---------+-----------+
                 0        77.8       155.5       233.3        311.0

     Warning: Not all the categories are observed in variable    9
              You should consider to remove this variable from the analysis

Variable   10  

 Value     Freq
                |
     1      98  |  ***************************
     2     145  |  ****************************************
     3     120  |  *********************************
     4      80  |  **********************
     5      36  |  *********
                +-----------+---------+---------+-----------+
                 0        36.3       72.5       108.8        145.0

Variable   11  

 Value     Freq
                |
     1      13  |  **
     2      52  |  **********
     3     154  |  ********************************
     4     191  |  ****************************************
     5      69  |  **************
                +-----------+---------+---------+-----------+
                 0        47.8       95.5       143.3        191.0

Variable   12  

 Value     Freq
                |
     1       3  |  
     2       4  |  
     3      26  |  ***
     4     165  |  ***********************
     5     281  |  ****************************************
                +-----------+---------+---------+-----------+
                 0        70.3       140.5       210.8        281.0

Variable   13  

 Value     Freq
                |
     1       1  |  
     2       2  |  
     3      36  |  *****
     4     197  |  ********************************
     5     243  |  ****************************************
                +-----------+---------+---------+-----------+
                 0        60.8       121.5       182.3        243.0

Variable   14  

 Value     Freq
                |
     1     219  |  ****************************************
     2     151  |  ***************************
     3      72  |  *************
     4      27  |  ****
     5      10  |  *
                +-----------+---------+---------+-----------+
                 0        54.8       109.5       164.3        219.0


--------------------------------------------------------------------------------

MULTIVARIATE DESCRIPTIVES 

Analysis of the Mardia's (1970) multivariate asymmetry skewness and kurtosis.

                                            Coefficient        Statistic     df       P

Skewness                                         18.469         1474.447    560     1.0000
SKewness corrected for small sample              18.469         1484.919    560     1.0000
Kurtosis                                        257.130           17.128            0.0000**

** Significant at 0.05

--------------------------------------------------------------------------------

STANDARIZED VARIANCE / COVARIANCE MATRIX (POLYCHORIC CORRELATION)
(Polychoric algorithm: Bayes modal estimation; Choi, Kim, Chen, & Dannels, 2011)

Variable     1        2        3        4        5        6        7        8        9       10       11       12       13       14     
V   1        1.000  
V   2        0.394    1.000  
V   3       -0.404   -0.478    1.000  
V   4        0.432    0.615   -0.474    1.000  
V   5       -0.423   -0.282    0.381   -0.123    1.000  
V   6       -0.361   -0.403    0.425   -0.280    0.619    1.000  
V   7        0.382    0.424   -0.339    0.455   -0.266   -0.359    1.000  
V   8        0.037   -0.043    0.015    0.026    0.084    0.057   -0.104    1.000  
V   9       -0.044    0.129   -0.023    0.120    0.071    0.016    0.058   -0.253    1.000  
V  10       -0.003   -0.087    0.073   -0.036    0.176    0.165   -0.141    0.393   -0.193    1.000  
V  11        0.004    0.068   -0.043    0.063   -0.133   -0.079    0.129   -0.527    0.333   -0.260    1.000  
V  12        0.094    0.230   -0.113    0.197   -0.067   -0.047    0.061   -0.182    0.281   -0.168    0.247    1.000  
V  13        0.053    0.221   -0.103    0.186   -0.036   -0.049    0.132   -0.295    0.444   -0.289    0.328    0.485    1.000  
V  14       -0.066   -0.161    0.115   -0.065    0.016    0.021   -0.171    0.480   -0.317    0.297   -0.406   -0.337   -0.354    1.000  

--------------------------------------------------------------------------------

BOOTSTRAP  95% CONFIDENCE INTERVALS FOR CORRELATIONS BETWEEN VARIABLES 

Variables            Value    Confidence Interval

v  1  -- v  2        0.394*   (  0.299     0.479)
v  1  -- v  3       -0.404*   ( -0.484    -0.314)
v  1  -- v  4        0.432*   (  0.332     0.511)
v  1  -- v  5       -0.423*   ( -0.501    -0.346)
v  1  -- v  6       -0.361*   ( -0.421    -0.240)
v  1  -- v  7        0.382*   (  0.278     0.472)
v  1  -- v  8        0.037    ( -0.058     0.152)
v  1  -- v  9       -0.044    ( -0.131     0.054)
v  1  -- v 10       -0.003    ( -0.106     0.096)
v  1  -- v 11        0.004    ( -0.094     0.094)
v  1  -- v 12        0.094    ( -0.014     0.189)
v  1  -- v 13        0.053    ( -0.042     0.163)
v  1  -- v 14       -0.066    ( -0.170     0.036)
v  2  -- v  3       -0.478*   ( -0.570    -0.395)
v  2  -- v  4        0.615*   (  0.540     0.700)
v  2  -- v  5       -0.282*   ( -0.378    -0.185)
v  2  -- v  6       -0.403*   ( -0.488    -0.323)
v  2  -- v  7        0.424*   (  0.343     0.518)
v  2  -- v  8       -0.043    ( -0.154     0.054)
v  2  -- v  9        0.129*   (  0.031     0.228)
v  2  -- v 10       -0.087    ( -0.186     0.003)
v  2  -- v 11        0.068    ( -0.024     0.169)
v  2  -- v 12        0.230*   (  0.127     0.337)
v  2  -- v 13        0.221*   (  0.115     0.313)
v  2  -- v 14       -0.161*   ( -0.256    -0.059)
v  3  -- v  4       -0.474*   ( -0.549    -0.374)
v  3  -- v  5        0.381*   (  0.290     0.466)
v  3  -- v  6        0.425*   (  0.342     0.508)
v  3  -- v  7       -0.339*   ( -0.429    -0.239)
v  3  -- v  8        0.015    ( -0.089     0.126)
v  3  -- v  9       -0.023    ( -0.117     0.087)
v  3  -- v 10        0.073    ( -0.022     0.181)
v  3  -- v 11       -0.043    ( -0.136     0.072)
v  3  -- v 12       -0.113*   ( -0.215    -0.011)
v  3  -- v 13       -0.103    ( -0.205     0.004)
v  3  -- v 14        0.115*   (  0.014     0.225)
v  4  -- v  5       -0.123*   ( -0.224    -0.023)
v  4  -- v  6       -0.280*   ( -0.378    -0.184)
v  4  -- v  7        0.455*   (  0.373     0.542)
v  4  -- v  8        0.026    ( -0.103     0.115)
v  4  -- v  9        0.120*   (  0.028     0.214)
v  4  -- v 10       -0.036    ( -0.144     0.054)
v  4  -- v 11        0.063    ( -0.045     0.171)
v  4  -- v 12        0.197*   (  0.095     0.305)
v  4  -- v 13        0.186*   (  0.086     0.281)
v  4  -- v 14       -0.065    ( -0.169     0.040)
v  5  -- v  6        0.619*   (  0.560     0.692)
v  5  -- v  7       -0.266*   ( -0.356    -0.171)
v  5  -- v  8        0.084    ( -0.005     0.180)
v  5  -- v  9        0.071    ( -0.024     0.176)
v  5  -- v 10        0.176*   (  0.070     0.275)
v  5  -- v 11       -0.133*   ( -0.224    -0.027)
v  5  -- v 12       -0.067    ( -0.155     0.040)
v  5  -- v 13       -0.036    ( -0.122     0.073)
v  5  -- v 14        0.016    ( -0.075     0.118)
v  6  -- v  7       -0.359*   ( -0.451    -0.261)
v  6  -- v  8        0.057    ( -0.051     0.153)
v  6  -- v  9        0.016    ( -0.066     0.127)
v  6  -- v 10        0.165*   (  0.043     0.262)
v  6  -- v 11       -0.079    ( -0.174     0.025)
v  6  -- v 12       -0.047    ( -0.158     0.051)
v  6  -- v 13       -0.049    ( -0.142     0.051)
v  6  -- v 14        0.021    ( -0.078     0.121)
v  7  -- v  8       -0.104*   ( -0.203    -0.002)
v  7  -- v  9        0.058    ( -0.026     0.153)
v  7  -- v 10       -0.141*   ( -0.241    -0.027)
v  7  -- v 11        0.129*   (  0.048     0.230)
v  7  -- v 12        0.061    ( -0.044     0.162)
v  7  -- v 13        0.132*   (  0.047     0.238)
v  7  -- v 14       -0.171*   ( -0.272    -0.071)
v  8  -- v  9       -0.253*   ( -0.353    -0.147)
v  8  -- v 10        0.393*   (  0.293     0.471)
v  8  -- v 11       -0.527*   ( -0.591    -0.430)
v  8  -- v 12       -0.182*   ( -0.272    -0.088)
v  8  -- v 13       -0.295*   ( -0.378    -0.206)
v  8  -- v 14        0.480*   (  0.382     0.554)
v  9  -- v 10       -0.193*   ( -0.280    -0.100)
v  9  -- v 11        0.333*   (  0.240     0.421)
v  9  -- v 12        0.281*   (  0.178     0.379)
v  9  -- v 13        0.444*   (  0.356     0.534)
v  9  -- v 14       -0.317*   ( -0.417    -0.213)
v 10  -- v 11       -0.260*   ( -0.359    -0.172)
v 10  -- v 12       -0.168*   ( -0.279    -0.070)
v 10  -- v 13       -0.289*   ( -0.385    -0.199)
v 10  -- v 14        0.297*   (  0.195     0.406)
v 11  -- v 12        0.247*   (  0.158     0.333)
v 11  -- v 13        0.328*   (  0.249     0.426)
v 11  -- v 14       -0.406*   ( -0.496    -0.320)
v 12  -- v 13        0.485*   (  0.410     0.566)
v 12  -- v 14       -0.337*   ( -0.428    -0.239)
v 13  -- v 14       -0.354*   ( -0.446    -0.232)

* Significantly different from zero at population

--------------------------------------------------------------------------------

ADEQUACY OF THE CORRELATION MATRIX 

Determinant of the matrix                 = 0.030805628460148
Bartlett's statistic                      =  1644.3 (df =    91; P = 0.000010)
Kaiser-Meyer-Olkin (KMO) test             = 0.78437 (fair)
Bootstrap  95% confidence interval of KMO = (  0.730      0.802)

--------------------------------------------------------------------------------

EXPLAINED VARIANCE BASED ON EIGENVALUES

Variable  Eigenvalue   Proportion of   Cumulative Proportion
                       Variance        of Variance

   1      3.78605      0.27043         0.27043  
   2      2.63675      0.18834         0.45877  
   3      1.36472      0.09748  
   4      0.92263      0.06590  
   5      0.77285      0.05520  
   6      0.73259      0.05233  
   7      0.64574      0.04612  
   8      0.59479      0.04248  
   9      0.55818      0.03987  
  10      0.49111      0.03508  
  11      0.45710      0.03265  
  12      0.39830      0.02845  
  13      0.35307      0.02522  
  14      0.28612      0.02044  
       
--------------------------------------------------------------------------------

PARALLEL ANALYSIS (PA) BASED ON MINIMUM RANK FACTOR ANALYSIS
(Timmerman & Lorenzo-Seva, 2011)

Implementation details:

	Correlation matrices analized:                Polychoric correlation matrices
	Number of random correlation matrices:        500
	Method to obtain random correlation matrices: Permutation of the raw data (Buja & Eyuboglu, 1992)


Variable  Real-data      Mean of random   95 percentile of random
          % of variance  % of variance    % of variance

   1       31.4*          14.4             16.6
   2       21.6*          13.1             15.0
   3       10.2           11.9             13.4
   4        6.7           10.8             12.0
   5        6.1            9.8             10.8
   6        5.2            8.7              9.7
   7        4.5            7.6              8.6
   8        3.8            6.6              7.7
   9        3.3            5.6              6.7
  10        2.8            4.5              5.7
  11        2.2            3.4              4.6
  12        1.4            2.3              3.5
  13        0.8            1.3              2.3
  14        0.0            0.0              0.0
       

*  Advised number of dimensions:    2

--------------------------------------------------------------------------------

ROBUST GOODNESS OF FIT STATISTICS 

                         Root Mean Square Error of Approximation (RMSEA) =   0.112; Bootstrap  95% confidence interval = (  0.103      0.137)
                                Estimated Non-Centrality Parameter (NCP) =  76.480
                                                      Degrees of Freedom = 64
                                                      Test of Approximate Fit
                                                      H0 : RMSEA < 0.05;  P = 1.000

             Minimum Fit Function Chi Square with  64 degrees of freedom = 226.170 (P = 0.000010)
               Robust Mean-Scaled Chi Square with  64 degrees of freedom = 449.484 (P = 0.000010)
           Chi-Square for independence model with  91 degrees of freedom = 3360.642
                             Non-Normed Fit Index (NNFI; Tucker & Lewis) =   0.832; Bootstrap  95% confidence interval = (  0.734      0.874)
                                             Comparative Fit Index (CFI) =   0.882; Bootstrap  95% confidence interval = (  0.813      0.912)
                          Schwarz’s Bayesian Information Criterion (BIC) = 708.695; Bootstrap  95% confidence interval = (645.789    900.509)

                                             Goodness of Fit Index (GFI) =   1.000; Bootstrap  95% confidence interval = (  0.986      1.000)
                                   Adjusted Goodness of Fit Index (AGFI) =   1.000; Bootstrap  95% confidence interval = (  0.980      1.009)
                     Goodness of Fit Index without diagonal values (GFI) =   1.000; Bootstrap  95% confidence interval = (  0.970      1.000)
            Adjusted Goodness of Fit Index without diagonal values(AGFI) =   1.000; Bootstrap  95% confidence interval = (  0.958      1.017)

EIGENVALUES OF THE REDUCED CORRELATION MATRIX

Variable  Eigenvalue 

   1      3.191689508 
   2      2.025701391 
   3      0.758072051 
   4      0.291424832 
   5      0.106437825 
   6      0.059364930 
   7      0.042258424 
   8     -0.039806738 
   9     -0.048211520 
  10     -0.105387518 
  11     -0.172879323 
  12     -0.190037553 
  13     -0.235361805 
  14     -0.299768291 
       
--------------------------------------------------------------------------------

UNROTATED LOADING MATRIX 

Variable                                        F   1    F   2    Communality

1. Extraversion +                              -0.519   -0.359       0.398
2. Extraversion +                              -0.669   -0.220       0.496
3. Extraversion -                               0.586    0.302       0.434
4. Extraversion +                              -0.610   -0.244       0.431
5. Extraversion -                               0.542    0.316       0.394
6. Extraversion -                               0.592    0.357       0.478
7. Extraversion +                              -0.547   -0.173       0.329
8. Openness -                                   0.350   -0.560       0.436
9. Openness +                                  -0.264    0.458       0.279
10. Openness -                                  0.326   -0.324       0.211
11. Openness +                                 -0.381    0.511       0.406
12. Openness +                                 -0.386    0.334       0.260
13. Openness +                                 -0.430    0.473       0.409
14. Openness -                                  0.395   -0.514       0.421

--------------------------------------------------------------------------------

SEMI-SPECIFIED TARGET LOADING MATRIX
User defined semi-specified target matrix

Variable                                     

1. Extraversion +                                ---     0.000  
2. Extraversion +                                ---     0.000  
3. Extraversion -                                ---     0.000  
4. Extraversion +                                ---     0.000  
5. Extraversion -                                ---     0.000  
6. Extraversion -                                ---     0.000  
7. Extraversion +                                ---     0.000  
8. Openness -                                   0.000     ---   
9. Openness +                                   0.000     ---   
10. Openness -                                  0.000     ---   
11. Openness +                                  0.000     ---   
12. Openness +                                  0.000     ---   
13. Openness +                                  0.000     ---   
14. Openness -                                  0.000     ---   

--------------------------------------------------------------------------------

ROTATED LOADING MATRIX 

Variable                                        F   1    F   2 

1. Extraversion +                               0.651   -0.114  
2. Extraversion +                               0.679    0.082  
3. Extraversion -                              -0.666    0.031  
4. Extraversion +                               0.647    0.033  
5. Extraversion -                              -0.641    0.063  
6. Extraversion -                              -0.708    0.080  
7. Extraversion +                               0.550    0.074  
8. Openness -                                   0.088   -0.678  
9. Openness +                                  -0.090    0.544  
10. Openness -                                 -0.047   -0.445  
11. Openness +                                 -0.032    0.644  
12. Openness +                                  0.088    0.481  
13. Openness +                                  0.032    0.630  
14. Openness -                                  0.022   -0.654  

ROTATED LOADING MATRIX 
(loadings lower than absolute   0.300 omitted)

Variable                                        F   1    F   2 

1. Extraversion +                               0.651           
2. Extraversion +                               0.679           
3. Extraversion -                              -0.666           
4. Extraversion +                               0.647           
5. Extraversion -                              -0.641           
6. Extraversion -                              -0.708           
7. Extraversion +                               0.550           
8. Openness -                                           -0.678  
9. Openness +                                            0.544  
10. Openness -                                          -0.445  
11. Openness +                                           0.644  
12. Openness +                                           0.481  
13. Openness +                                           0.630  
14. Openness -                                          -0.654  

EXPLAINED VARIANCE OF ROTATED FACTORS AND RELIABILITY OF PHI-INFORMATION OBLIQUE EAP SCORES
Ferrando & Lorenzo-Seva (2016)

Factor      Variance                      ORION (Overall Reliability of fully-Informative prior Oblique N-EAP scores)
                                               

   1         2.955                          0.917
   2         2.428                          0.874


The appropriate implementation of EAP score estimation in factor model involves to obtain 
point estimates that make use of the full prior information (in particular the inter-factor 
correlation matrix), and to complement the point estimates with measures of the reliability of 
these estimates. In order to achieve it, FACTOR computes: (1) the EAP score estimation named 
'Fully-Informative Prior Oblique EAP scores'; and (2) the reliability estimates named ORION
 (acronim for 'Overall Reliability of fully-Informative prior Oblique N-EAP scores').
See Ferrando & Lorenzo-Seva (2016) for further details.

--------------------------------------------------------------------------------

INTER-FACTORS CORRELATION MATRIX

Factor       F   1    F   2 

F   1        1.000  
F   2        0.256    1.000  

--------------------------------------------------------------------------------

STRUCTURE MATRIX 

Variable                                        F   1    F   2 

1. Extraversion +                               0.621    0.052  
2. Extraversion +                               0.700    0.255  
3. Extraversion -                              -0.658   -0.140  
4. Extraversion +                               0.656    0.199  
5. Extraversion -                              -0.624   -0.101  
6. Extraversion -                              -0.687   -0.101  
7. Extraversion +                               0.569    0.214  
8. Openness -                                  -0.085   -0.655  
9. Openness +                                   0.049    0.521  
10. Openness -                                 -0.161   -0.457  
11. Openness +                                  0.133    0.636  
12. Openness +                                  0.211    0.503  
13. Openness +                                  0.194    0.639  
14. Openness -                                 -0.145   -0.648  

--------------------------------------------------------------------------------

BOOTSTRAP  95% CONFIDENCE INTERVALS FOR LOADING VALUES 


Variable                                        F   1    Confidence Interval

1. Extraversion +                               0.651    (  0.559     0.711)
2. Extraversion +                               0.679    (  0.599     0.754)
3. Extraversion -                              -0.666    ( -0.735    -0.583)
4. Extraversion +                               0.647    (  0.559     0.723)
5. Extraversion -                              -0.641    ( -0.725    -0.552)
6. Extraversion -                              -0.708    ( -0.777    -0.617)
7. Extraversion +                               0.550    (  0.470     0.634)
8. Openness -                                   0.088    ( -0.010     0.167)
9. Openness +                                  -0.090    ( -0.176     0.007)
10. Openness -                                 -0.047    ( -0.145     0.040)
11. Openness +                                 -0.032    ( -0.108     0.055)
12. Openness +                                  0.088    ( -0.027     0.204)
13. Openness +                                  0.032    ( -0.057     0.116)
14. Openness -                                  0.022    ( -0.067     0.094)


Variable                                        F   2    Confidence Interval

1. Extraversion +                              -0.114    ( -0.227    -0.003)
2. Extraversion +                               0.082    ( -0.003     0.186)
3. Extraversion -                               0.031    ( -0.046     0.104)
4. Extraversion +                               0.033    ( -0.064     0.156)
5. Extraversion -                               0.063    ( -0.052     0.187)
6. Extraversion -                               0.080    ( -0.022     0.186)
7. Extraversion +                               0.074    ( -0.018     0.175)
8. Openness -                                  -0.678    ( -0.749    -0.563)
9. Openness +                                   0.544    (  0.461     0.631)
10. Openness -                                 -0.445    ( -0.547    -0.340)
11. Openness +                                  0.644    (  0.562     0.721)
12. Openness +                                  0.481    (  0.371     0.578)
13. Openness +                                  0.630    (  0.546     0.726)
14. Openness -                                 -0.654    ( -0.729    -0.544)


--------------------------------------------------------------------------------

BOOTSTRAP  95% CONFIDENCE INTERVALS FOR INTER-FACTORS CORRELATION VALUES 

   1  --   2        0.256*   (  0.138     0.339)

* Significantly different from zero at population


--------------------------------------------------------------------------------

CONGRUENCE BETWEEN ROTATED LOADING MATRIX AND TARGET MATRIX
Tucker (1951)

CONGRUENCE OF VARIABLES

Variable                                     Congruence        Bootstrap  95% Confidence intervals

1. Extraversion +                               0.985          (  0.948      1.000)
2. Extraversion +                               0.993          (  0.959      1.000)
3. Extraversion -                               0.999          (  0.989      1.000)
4. Extraversion +                               0.999          (  0.967      1.000)
5. Extraversion -                               0.995          (  0.965      1.000)
6. Extraversion -                               0.994          (  0.969      1.000)
7. Extraversion +                               0.991          (  0.951      1.000)
8. Openness -                                   0.992          (  0.970      1.000)
9. Openness +                                   0.987          (  0.954      1.000)
10. Openness -                                  0.994          (  0.933      1.000)
11. Openness +                                  0.999          (  0.987      1.000)
12. Openness +                                  0.984          (  0.894      1.000)
13. Openness +                                  0.999          (  0.979      1.000)
14. Openness -                                  0.999          (  0.990      1.000)


F   1        0.993           (  0.979      0.996)
F   2        0.982           (  0.957      0.988)


                 OVERALL CONGRUENCE =    0.986
BOOTSTRAP  95% CONFIDENCE INTERVALS = (  0.972      0.990)

GUIDELINEs TO INTERPRET CONGRUENCE INDEX
Lorenzo-Seva & ten Berge (2006)


A congruence value in the range .85-.94 corresponds to a fair similarity, 
while a value higher than .95 implies that the two factors (or components)
compared can be considered equal.

Note: non-specified values in the target matrix were set to 1 (or -1)
      to compute congruences.

--------------------------------------------------------------------------------

ITEM RESPONSE THEORY PARAMETERIZATION: MULTIDIMENSIONAL NORMAL-OGIVE GRADED RESPONSE MODEL
Reckase's parameterization (Reckase, 1985)

PATTERN OF ITEM DISCRIMINATIONS

Item                                            a   1    a   2    MDISC    

1. Extraversion +                               0.839   -0.147    0.852  
2. Extraversion +                               0.956    0.115    0.963  
3. Extraversion -                              -0.886    0.041    0.887  
4. Extraversion +                               0.858    0.044    0.859  
5. Extraversion -                              -0.823    0.081    0.827  
6. Extraversion -                              -0.980    0.111    0.986  
7. Extraversion +                               0.672    0.090    0.678  
8. Openness -                                   0.117   -0.902    0.910  
9. Openness +                                  -0.106    0.641    0.650  
10. Openness -                                 -0.053   -0.501    0.504  
11. Openness +                                 -0.041    0.836    0.837  
12. Openness +                                  0.103    0.559    0.568  
13. Openness +                                  0.042    0.820    0.821  
14. Openness -                                  0.029   -0.859    0.860  

    a: item discrimination in each dimension
MDISC: item multidimensional discrimination


CATEGORY INTERCEPTS

Item                                            d   1    d   2    d   3    d   4 

1. Extraversion +                              -1.969   -0.835    0.806    2.149  
2. Extraversion +                              -3.205   -2.199   -0.780    1.425  
3. Extraversion -                              -0.794    0.334    1.300    2.245  
4. Extraversion +                              -2.791   -1.604   -0.308    1.342  
5. Extraversion -                              -2.645   -1.582   -0.075    1.084  
6. Extraversion -                              -2.416   -0.897    0.569    2.037  
7. Extraversion +                              -2.373   -1.400    0.287    1.796  
8. Openness -                                  -0.581    0.525    1.548    2.444  
9. Openness +                                  -3.627   -3.019   -2.178   -0.454  
10. Openness -                                 -0.929    0.016    0.777    1.590  
11. Openness +                                 -2.478   -1.425   -0.144    1.359  
12. Openness +                                 -2.842   -2.506   -1.720   -0.258  
13. Openness +                                 -3.558   -3.179   -1.810   -0.029  
14. Openness -                                 -0.146    0.969    1.837    2.577  


--------------------------------------------------------------------------------

DISTRIBUTION OF RESIDUALS 

Number of Residuals = 91

Summary Statistics for Fitted Residuals

                           Smallest Fitted Residual = -0.1081
                             Median Fitted Residual =  0.0266
                            Largest Fitted Residual =  0.2850
                               Mean Fitted Residual =  0.0304
                           Variance Fitted Residual =  0.0043

               Root Mean Square of Residuals (RMSR) =  0.0723
         Bootstrap  95% confidence interval of RMSR = (  0.068      0.087)
Expected mean value of RMSR for an acceptable model =  0.0457 (Kelley's criterion) (Kelley, 1935,page 146; see also Harman, 1962, page 21 of the 

2nd edition)

Note: if the value of RMSR is much larger than Kelley's criterion value the model cannot be considered as good


Histogram for fitted residuals


 Value           Freq
                      |
   -0.1081         2  |  ***
   -0.0688         4  |  ******
   -0.0295        18  |  *******************************
    0.0098        23  |  ****************************************
    0.0491        22  |  **************************************
    0.0885        13  |  **********************
    0.1278         3  |  *****
    0.1671         5  |  ********
    0.2064         0  |  
    0.2457         0  |  
    0.2850         1  |  *
                      +-----------+---------+---------+-----------+
                      0        5.8      11.5      17.3       23.0


Summary Statistics for Standardized Residuals

Smallest Standardized Residual = -2.36
  Median Standardized Residual =  0.58
 Largest Standardized Residual =  6.23
    Mean Standardized Residual =  0.66
       
Stemleaf Plot for Standardized Residuals

  -2 | 40
  -1 | 9766000
  -0 | 98877766555444322221
   0 | 0001112223345566667788888999
   1 | 011112233445555667899
   2 | 112256
   3 | 13457
   4 | 1
   5 | 
   6 | 2


Largest Positive Standardized Residuals

Residual for Var   4 and Var   2     3.37
Residual for Var   5 and Var   2     3.29
Residual for Var   5 and Var   4     6.23
Residual for Var   6 and Var   4     3.67
Residual for Var   6 and Var   5     4.06
Residual for Var  12 and Var   8     3.07
Residual for Var  13 and Var   8     2.65
Residual for Var  13 and Var  12     3.52
       
--------------------------------------------------------------------------------

DESCRIPTIVES RELATED TO MISSING DATA

 Missing value code           :     999
 Total number of missing data :     30
 Method to handle missing data:     Hot-Deck Multiple Imputation in Exploratory Factor Analysis (Lorenzo-Seva & Van Ginkel, 2016)
 Number of imputated datasets :     Five


 NUMBER OF VARIABLES MISSING PER CASE

 Number of variables     Frequency
             missing      

                   0  |    479 ( 95.8%)
                   1  |     15 (  3.0%)
                   2  |      4 (  0.8%)
                   3  |      1 (  0.2%)
                   4  |      1 (  0.2%)


 NUMBER OF CASES MISSING PER VARIABLE

 Variable                                       Frequency of cases missing
 1. Extraversion +                                  2     
 2. Extraversion +                                  2     
 3. Extraversion -                                  3     
 4. Extraversion +                                  1     
 5. Extraversion -                                  3     
 6. Extraversion -                                  2     
 7. Extraversion +                                  3     
 8. Openness -                                      3     
 9. Openness +                                      4     
 10. Openness -                                     3     
 11. Openness +                                     0     
 12. Openness +                                     1     
 13. Openness +                                     0     
 14. Openness -                                     3     


 CONSENSUS LOADING MATRIX AMONG MULTIPLE IMPUTATED DATASETS

 Variable                                        F   1    F   2 

 1. Extraversion +                               0.637   -0.100  
 2. Extraversion +                               0.692    0.082  
 3. Extraversion -                              -0.678    0.039  
 4. Extraversion +                               0.658    0.033  
 5. Extraversion -                              -0.635    0.061  
 6. Extraversion -                              -0.722    0.068  
 7. Extraversion +                               0.561    0.064  
 8. Openness -                                   0.100   -0.681  
 9. Openness +                                  -0.071    0.532  
 10. Openness -                                 -0.049   -0.433  
 11. Openness +                                 -0.051    0.657  
 12. Openness +                                  0.098    0.495  
 13. Openness +                                  0.041    0.636  
 14. Openness -                                  0.038   -0.648  

 CONSENSUS INTER-FACTOR CORRELATION MATRIX AMONG MULTIPLE IMPUTATED DATASETS

 Factor       F   1    F   2 

 F   1        1.000  
 F   2        0.264    1.000  


--------------------------------------------------------------------------------

PARTICIPANTS' SCORES ON FACTORS: PHI-Information Oblique EAP scores
Ferrando & Lorenzo-Seva (2016) 

Method to handle missing data: Hot-Deck Multiple Imputation in Exploratory Factor Analysis (Lorenzo-Seva & Van Ginkel, 2016)

Case          Factor    
              1        2     

   1         82.440   57.421  
   2         56.355   54.268  
   3         50.053   46.905  
   4         49.199   34.086  
   5         47.521   39.617  
   6         26.275   44.579  
   7         51.850   49.699  
   8         57.155   56.090  
   9         52.509   55.125  
  10         54.564   46.216  
  11         30.245   62.670  
  12         59.826   53.456  
  13         75.770   60.847  
  14         52.925   50.863  
  15         65.778   56.760  
  16         46.578   45.231  
  17         51.930   47.250  
  18         43.204   44.278  
  19         37.742   49.588  
  20         35.898   46.496  
  21         47.953   27.123  
  22         47.338   43.623  
  23         29.245   41.985  
  24         61.554   70.209  
  25         41.999   40.085  
  26         39.043   41.359  
  27         82.153   74.652  
  28         47.140   33.274  
  29         61.154   46.617  
  30         54.032   54.816  
  31         41.111   41.550  
  32         49.870   40.596  
  33         39.469   30.044  
  34         32.094   39.928  
  35         47.459   42.344  
  36         53.003   59.308  
  37         45.826   44.885  
  38         49.092   55.216  
  39         38.578   55.855  
  40         52.673   61.202  
  41         56.639   41.113  
  42         37.165   55.148  
  43         50.449   50.494  
  44         55.947   69.696  
  45         59.277   42.630  
  46         42.481   53.869  
  47         39.284   43.609  
  48         38.191   55.413  
  49         45.994   46.191  
  50         48.223   51.503  
  51         42.227   59.332  
  52         42.858   38.213  
  53         38.494   45.088  
  54         52.758   40.381  
  55         64.409   54.533  
  56         51.331   55.009  
  57         62.366   40.041  
  58         49.698   22.430  
  59         45.488   49.716  
  60         42.222   56.845  
  61         45.612   33.672  
  62         30.089   50.129  
  63         62.331   53.681  
  64         76.171   61.238  
  65         48.386   45.904  
  66         45.871   51.327  
  67         51.617   54.835  
  68         40.752   57.274  
  69         52.606   49.148  
  70         53.105   70.684  
  71         51.601   69.893  
  72         45.457   35.278  
  73         51.211   38.412  
  74         67.549   41.929  
  75         55.595   71.699  
  76         42.995   54.660  
  77         38.264   42.437  
  78         47.209   56.135  
  79         46.607   57.903  
  80         57.486   60.301  
  81         55.327   37.727  
  82         36.794   60.122  
  83         24.600   38.826  
  84         56.242   54.101  
  85         53.899   43.199  
  86         46.997   46.239  
  87         59.364   44.080  
  88         46.442   46.129  
  89         49.774   48.002  
  90         51.979   34.244  
  91         64.177   61.049  
  92         37.793   60.428  
  93         41.341   55.122  
  94         53.460   52.801  
  95         55.140   70.720  
  96         51.975   44.461  
  97         55.189   68.992  
  98         65.028   52.029  
  99         44.588   39.853  
 100         44.985   34.148  
 101         45.530   48.302  
 102         52.820   63.292  
 103         52.087   53.499  
 104         43.626   60.049  
 105         48.249   49.621  
 106         45.103   53.114  
 107         42.831   56.658  
 108         68.118   56.252  
 109         48.526   40.487  
 110         41.899   44.288  
 111         49.927   49.566  
 112         52.616   67.748  
 113         48.294   42.716  
 114         44.942   53.204  
 115         44.700   39.672  
 116         56.644   52.280  
 117         50.254   49.367  
 118         48.458   52.618  
 119         67.957   54.482  
 120         45.631   44.378  
 121         44.875   51.609  
 122         46.534   35.471  
 123         53.489   40.248  
 124         59.430   55.385  
 125         30.524   47.101  
 126         47.374   52.454  
 127         50.884   33.648  
 128         47.639   44.637  
 129         54.664   54.096  
 130         43.180   38.731  
 131         44.239   38.158  
 132         43.609   50.047  
 133         42.134   41.430  
 134         55.011   59.752  
 135         60.669   55.586  
 136         55.236   38.675  
 137         52.921   48.369  
 138         44.008   46.742  
 139         57.331   43.304  
 140         36.718   53.836  
 141         73.420   49.922  
 142         41.574   45.509  
 143         37.240   43.416  
 144         55.872   48.659  
 145         43.211   37.675  
 146         57.755   54.684  
 147         55.850   39.247  
 148         51.843   44.922  
 149         59.170   49.185  
 150         42.548   43.738  
 151         49.768   68.271  
 152         65.472   48.175  
 153         62.279   49.457  
 154         60.199   51.575  
 155         50.728   58.430  
 156         55.815   55.307  
 157         60.013   60.106  
 158         49.164   46.558  
 159         55.176   54.138  
 160         59.065   55.579  
 161         60.316   55.002  
 162         50.527   48.690  
 163         44.449   38.123  
 164         46.852   51.010  
 165         56.993   59.089  
 166         45.396   49.059  
 167         50.436   53.159  
 168         54.126   41.475  
 169         49.660   45.209  
 170         48.344   53.603  
 171         51.081   65.883  
 172         58.979   26.576  
 173         49.776   71.615  
 174         54.624   35.589  
 175         41.664   48.286  
 176         63.912   47.133  
 177         41.387   53.234  
 178         63.170   43.039  
 179         57.387   40.791  
 180         42.965   48.180  
 181         35.116   47.973  
 182         58.533   59.130  
 183         47.560   49.714  
 184         47.871   52.305  
 185         44.192   44.049  
 186         44.377   42.862  
 187         44.398   51.948  
 188         42.715   37.882  
 189         58.480   54.997  
 190         60.379   39.631  
 191         59.476   52.758  
 192         48.852   62.865  
 193         30.141   50.808  
 194         48.792   60.491  
 195         63.495   58.478  
 196         51.835   42.155  
 197         50.057   47.435  
 198         40.171   42.935  
 199         44.642   54.038  
 200         40.570   47.200  
 201         36.681   55.091  
 202         51.934   57.615  
 203         45.367   48.303  
 204         70.005   54.006  
 205         42.972   52.493  
 206         51.619   49.668  
 207         47.539   56.116  
 208         57.660   69.767  
 209         56.313   59.712  
 210         68.266   54.262  
 211         48.307   61.725  
 212         59.511   44.372  
 213         52.528   48.371  
 214         41.938   36.429  
 215         50.140   51.582  
 216         40.790   40.273  
 217         41.247   38.844  
 218         48.720   43.389  
 219         56.563   65.101  
 220         30.696   34.738  
 221         52.818   56.177  
 222         59.863   40.095  
 223         61.271   53.664  
 224         52.977   56.337  
 225         51.401   40.347  
 226         60.639   44.493  
 227         46.967   46.912  
 228         52.616   41.558  
 229         51.271   45.603  
 230         45.000   40.083  
 231         81.581   48.394  
 232         38.243   47.169  
 233         58.080   45.707  
 234         42.722   59.843  
 235         45.497   48.973  
 236         51.644   66.690  
 237         39.220   35.641  
 238         43.581   67.614  
 239         42.939   44.787  
 240         55.737   31.990  
 241         50.435   50.961  
 242         52.094   59.101  
 243         48.524   43.565  
 244         42.374   52.035  
 245         38.251   44.231  
 246         64.269   63.553  
 247         50.303   42.099  
 248         43.438   45.931  
 249         50.448   42.178  
 250         54.635   57.334  
 251         33.420   46.523  
 252         33.418   43.922  
 253         73.324   54.436  
 254         47.844   41.337  
 255         59.537   44.970  
 256         51.901   45.818  
 257         39.773   43.491  
 258         50.030   49.658  
 259         51.129   52.750  
 260         65.465   52.459  
 261         39.292   30.847  
 262         52.316   45.121  
 263         42.884   50.865  
 264         43.307   68.195  
 265         56.692   42.032  
 266         57.731   57.668  
 267         44.360   45.374  
 268         49.016   58.735  
 269         44.968   47.309  
 270         39.123   45.548  
 271         50.760   66.487  
 272         58.769   45.486  
 273         57.148   56.610  
 274         46.973   40.729  
 275         31.876   40.928  
 276         54.630   60.816  
 277         42.803   54.863  
 278         42.084   31.288  
 279         54.306   44.965  
 280         41.172   39.575  
 281         50.166   58.537  
 282         48.671   44.614  
 283         49.313   50.151  
 284         45.669   43.303  
 285         31.402   44.462  
 286         61.260   37.616  
 287         36.046   68.246  
 288         57.037   38.370  
 289         47.140   60.785  
 290         59.809   65.913  
 291         52.953   51.021  
 292         44.170   44.691  
 293         37.542   68.091  
 294         40.530   38.571  
 295         64.536   41.964  
 296         83.462   61.059  
 297         49.402   45.521  
 298         60.031   60.422  
 299         50.612   52.668  
 300         40.008   65.085  
 301         61.261   69.964  
 302         66.674   46.210  
 303         51.246   46.490  
 304         59.957   55.313  
 305         52.480   48.409  
 306         37.367   39.587  
 307         64.887   30.708  
 308         45.924   55.514  
 309         47.531   55.525  
 310         55.689   71.151  
 311         48.248   70.191  
 312         36.435   52.164  
 313         59.402   56.899  
 314         56.308   50.211  
 315         49.405   45.226  
 316         47.947   36.250  
 317         54.171   49.399  
 318         56.491   53.870  
 319         38.456   72.189  
 320         45.035   31.956  
 321         54.884   58.106  
 322         41.687   45.292  
 323         54.694   62.778  
 324         40.966   31.709  
 325         54.861   49.234  
 326         43.801   32.598  
 327         55.669   58.525  
 328         59.633   42.871  
 329         39.697   58.954  
 330         53.222   76.060  
 331         75.509   44.523  
 332         49.989   48.391  
 333         46.703   49.378  
 334         52.296   57.515  
 335         53.619   56.594  
 336         57.687   65.179  
 337         39.036   61.029  
 338         70.290   66.786  
 339         34.481   67.089  
 340         54.628   56.868  
 341         50.020   31.461  
 342         43.040   31.436  
 343         50.211   45.572  
 344         53.450   57.710  
 345         59.338   47.694  
 346         52.114   50.266  
 347         49.175   52.530  
 348         59.364   59.989  
 349         64.953   46.612  
 350         39.746   38.049  
 351         43.678   44.179  
 352         55.959   46.440  
 353         45.862   53.935  
 354         56.561   51.764  
 355         49.270   40.220  
 356         44.102   52.145  
 357         59.764   39.021  
 358         29.987   42.558  
 359         27.591   50.283  
 360         46.290   61.134  
 361         43.300   52.442  
 362         43.762   55.086  
 363         63.822   68.303  
 364         59.509   62.981  
 365         54.711   53.955  
 366         34.244   46.476  
 367         48.869   49.876  
 368         46.427   37.848  
 369         46.713   55.180  
 370         55.117   53.156  
 371         42.275   26.926  
 372         50.362   43.764  
 373         55.511   39.636  
 374         41.569   55.429  
 375         55.599   39.466  
 376         63.822   68.303  
 377         72.047   50.655  
 378         41.874   30.809  
 379         60.820   58.700  
 380         54.584   56.658  
 381         46.335   45.623  
 382         44.227   58.629  
 383         50.509   70.288  
 384         51.665   42.524  
 385         67.531   72.212  
 386         46.732   50.513  
 387         54.923   57.988  
 388         60.039   68.723  
 389         56.467   59.250  
 390         48.983   40.716  
 391         48.983   40.716  
 392         58.931   54.784  
 393         60.148   58.604  
 394         57.000   42.199  
 395         54.639   32.948  
 396         44.146   36.658  
 397         47.158   66.587  
 398         47.993   67.385  
 399         36.984   60.634  
 400         56.618   43.296  
 401         63.356   57.415  
 402         65.066   63.387  
 403         46.175   47.370  
 404         42.448   61.604  
 405         42.021   40.993  
 406         34.862   43.225  
 407         43.015   45.753  
 408         42.584   63.514  
 409         63.206   62.126  
 410         70.360   45.133  
 411         41.048   67.819  
 412         59.178   58.265  
 413         42.889   74.484  
 414         38.042   50.299  
 415         57.860   45.511  
 416         62.222   76.016  
 417         66.344   37.055  
 418         47.198   55.626  
 419         38.372   43.356  
 420         48.381   57.100  
 421         52.401   54.124  
 422         35.842   48.442  
 423         52.217   42.125  
 424         30.644   53.977  
 425         44.521   37.183  
 426         35.501   60.286  
 427         67.708   52.717  
 428         43.295   52.748  
 429         17.254   36.451  
 430         44.228   52.803  
 431         24.630   51.122  
 432         57.917   55.955  
 433         75.063   68.622  
 434         59.000   60.969  
 435         25.596   45.059  
 436         39.731   42.542  
 437         59.131   70.036  
 438         34.436   44.548  
 439         34.049   35.971  
 440         55.321   72.111  
 441         55.942   40.567  
 442         52.368   46.508  
 443         54.314   51.884  
 444         54.624   59.667  
 445         54.355   39.890  
 446         51.793   32.977  
 447         43.626   39.291  
 448         48.572   46.376  
 449         49.716   44.959  
 450         51.688   45.759  
 451         60.951   60.105  
 452         47.304   47.997  
 453         30.637   40.977  
 454         58.827   53.439  
 455         39.666   35.185  
 456         41.499   36.020  
 457         44.961   49.357  
 458         39.323   42.951  
 459         54.999   44.478  
 460         47.984   47.690  
 461         52.328   43.972  
 462         60.181   55.351  
 463         50.985   42.340  
 464         37.164   45.835  
 465         56.121   77.270  
 466         44.334   40.334  
 467         45.879   49.402  
 468         69.575   42.467  
 469         56.757   46.553  
 470         56.407   52.649  
 471         56.761   48.262  
 472         49.208   51.255  
 473         41.190   50.240  
 474         66.302   59.278  
 475         43.175   32.879  
 476         35.314   46.564  
 477         42.484   42.081  
 478         43.572   45.231  
 479         46.494   53.750  
 480         74.159   76.187  
 481         29.235   33.409  
 482         64.497   38.380  
 483         74.523   68.642  
 484         37.072   37.358  
 485         46.282   51.425  
 486         34.877   43.492  
 487         60.084   41.691  
 488         21.761   55.804  
 489         33.546   35.438  
 490         54.602   64.955  
 491         68.838   49.563  
 492         41.147   38.875  
 493         44.153   53.412  
 494         48.879   45.270  
 495         42.720   60.956  
 496         53.658   23.509  
 497         37.695   53.546  
 498         61.726   45.578  
 499         48.652   47.050  
 500         56.021   43.380  


PRECISION OF FACTOR SCORES 

FACTOR:  1 

Case         Approximate 95%       Posterior   Reliability
             confidence interval   SE         

   1        ( 76.326   88.555)       3.717       0.862
   2        ( 51.204   61.507)       3.132       0.902
   3        ( 45.822   54.285)       2.572       0.934
   4        ( 44.767   53.632)       2.695       0.927
   5        ( 43.266   51.775)       2.586       0.933
   6        ( 21.690   30.861)       2.788       0.922
   7        ( 47.496   56.203)       2.647       0.930
   8        ( 52.786   61.525)       2.656       0.929
   9        ( 48.012   57.007)       2.734       0.925
  10        ( 50.098   59.030)       2.715       0.926
  11        ( 25.381   35.108)       2.957       0.913
  12        ( 55.093   64.559)       2.877       0.917
  13        ( 69.741   81.799)       3.670       0.865
  14        ( 48.560   57.290)       2.654       0.930
  15        ( 61.245   70.310)       2.756       0.924
  16        ( 41.966   51.190)       2.804       0.921
  17        ( 47.151   56.709)       2.905       0.916
  18        ( 37.344   49.064)       3.563       0.873
  19        ( 32.093   43.391)       3.434       0.882
  20        ( 30.958   40.838)       3.005       0.910
  21        ( 43.521   52.385)       2.695       0.927
  22        ( 43.048   51.629)       2.609       0.932
  23        ( 24.566   33.924)       2.845       0.919
  24        ( 57.135   65.973)       2.687       0.928
  25        ( 37.931   46.067)       2.473       0.939
  26        ( 34.455   43.631)       2.789       0.922
  27        ( 75.794   88.512)       3.866       0.851
  28        ( 42.857   51.423)       2.604       0.932
  29        ( 56.710   65.599)       2.702       0.927
  30        ( 49.363   58.702)       2.839       0.919
  31        ( 36.765   45.457)       2.642       0.930
  32        ( 45.473   54.267)       2.673       0.929
  33        ( 34.967   43.972)       2.737       0.925
  34        ( 27.595   36.594)       2.735       0.925
  35        ( 43.096   51.823)       2.654       0.930
  36        ( 48.642   57.363)       2.651       0.930
  37        ( 41.476   50.175)       2.644       0.930
  38        ( 44.372   53.812)       2.870       0.918
  39        ( 34.404   42.753)       2.538       0.936
  40        ( 48.186   57.160)       2.728       0.926
  41        ( 52.192   61.086)       2.704       0.927
  42        ( 33.062   41.268)       2.495       0.938
  43        ( 46.012   54.885)       2.697       0.927
  44        ( 51.445   60.450)       2.737       0.925
  45        ( 54.809   63.744)       2.716       0.926
  46        ( 38.428   46.535)       2.464       0.939
  47        ( 35.263   43.305)       2.445       0.940
  48        ( 34.022   42.361)       2.535       0.936
  49        ( 41.240   50.747)       2.890       0.916
  50        ( 43.540   52.907)       2.847       0.919
  51        ( 38.025   46.429)       2.555       0.935
  52        ( 38.775   46.940)       2.482       0.938
  53        ( 34.083   42.904)       2.682       0.928
  54        ( 48.232   57.284)       2.751       0.924
  55        ( 59.603   69.216)       2.922       0.915
  56        ( 47.069   55.592)       2.591       0.933
  57        ( 57.204   67.527)       3.138       0.902
  58        ( 44.712   54.685)       3.032       0.908
  59        ( 40.540   50.437)       3.009       0.909
  60        ( 37.739   46.706)       2.726       0.926
  61        ( 40.674   50.550)       3.002       0.910
  62        ( 25.042   35.136)       3.068       0.906
  63        ( 57.574   67.088)       2.892       0.916
  64        ( 70.330   82.012)       3.551       0.874
  65        ( 44.151   52.622)       2.575       0.934
  66        ( 41.503   50.239)       2.656       0.929
  67        ( 46.696   56.539)       2.992       0.910
  68        ( 36.608   44.896)       2.520       0.937
  69        ( 48.232   56.980)       2.659       0.929
  70        ( 48.754   57.456)       2.645       0.930
  71        ( 47.105   56.098)       2.734       0.925
  72        ( 41.259   49.656)       2.553       0.935
  73        ( 46.739   55.683)       2.719       0.926
  74        ( 62.798   72.300)       2.888       0.917
  75        ( 51.189   60.001)       2.678       0.928
  76        ( 38.557   47.433)       2.699       0.927
  77        ( 34.072   42.456)       2.549       0.935
  78        ( 42.791   51.628)       2.686       0.928
  79        ( 41.979   51.235)       2.813       0.921
  80        ( 53.068   61.904)       2.686       0.928
  81        ( 50.458   60.196)       2.960       0.912
  82        ( 32.344   41.244)       2.705       0.927
  83        ( 19.180   30.021)       3.295       0.891
  84        ( 51.574   60.909)       2.837       0.919
  85        ( 49.561   58.237)       2.637       0.930
  86        ( 42.690   51.303)       2.618       0.931
  87        ( 54.945   63.782)       2.687       0.928
  88        ( 41.756   51.128)       2.849       0.919
  89        ( 45.092   54.455)       2.846       0.919
  90        ( 47.023   56.935)       3.013       0.909
  91        ( 59.468   68.885)       2.863       0.918
  92        ( 33.449   42.137)       2.641       0.930
  93        ( 36.838   45.843)       2.737       0.925
  94        ( 49.126   57.794)       2.635       0.931
  95        ( 50.257   60.022)       2.969       0.912
  96        ( 46.917   57.032)       3.075       0.905
  97        ( 50.504   59.875)       2.849       0.919
  98        ( 60.576   69.480)       2.707       0.927
  99        ( 40.139   49.036)       2.705       0.927
 100        ( 40.733   49.237)       2.585       0.933
 101        ( 40.760   50.299)       2.900       0.916
 102        ( 48.562   57.078)       2.589       0.933
 103        ( 47.494   56.681)       2.793       0.922
 104        ( 39.426   47.827)       2.554       0.935
 105        ( 43.699   52.799)       2.766       0.923
 106        ( 40.051   50.156)       3.072       0.906
 107        ( 38.654   47.008)       2.539       0.936
 108        ( 63.250   72.986)       2.960       0.912
 109        ( 44.100   52.952)       2.691       0.928
 110        ( 37.337   46.460)       2.773       0.923
 111        ( 45.480   54.373)       2.703       0.927
 112        ( 48.290   56.943)       2.631       0.931
 113        ( 43.684   52.905)       2.803       0.921
 114        ( 39.748   50.136)       3.158       0.900
 115        ( 40.295   49.104)       2.678       0.928
 116        ( 52.122   61.167)       2.750       0.924
 117        ( 45.989   54.519)       2.593       0.933
 118        ( 43.974   52.942)       2.726       0.926
 119        ( 63.162   72.751)       2.915       0.915
 120        ( 41.425   49.837)       2.557       0.935
 121        ( 40.234   49.515)       2.821       0.920
 122        ( 42.042   51.025)       2.731       0.925
 123        ( 48.955   58.023)       2.756       0.924
 124        ( 54.904   63.955)       2.751       0.924
 125        ( 25.583   35.464)       3.004       0.910
 126        ( 42.972   51.775)       2.676       0.928
 127        ( 45.645   56.123)       3.185       0.899
 128        ( 43.280   51.998)       2.650       0.930
 129        ( 50.135   59.193)       2.753       0.924
 130        ( 38.883   47.477)       2.612       0.932
 131        ( 39.752   48.726)       2.728       0.926
 132        ( 38.964   48.254)       2.824       0.920
 133        ( 38.040   46.229)       2.489       0.938
 134        ( 49.828   60.193)       3.150       0.901
 135        ( 56.243   65.094)       2.691       0.928
 136        ( 50.705   59.767)       2.755       0.924
 137        ( 48.553   57.289)       2.655       0.929
 138        ( 39.558   48.458)       2.705       0.927
 139        ( 52.812   61.850)       2.747       0.925
 140        ( 32.517   40.919)       2.554       0.935
 141        ( 67.242   79.597)       3.756       0.859
 142        ( 36.833   46.315)       2.883       0.917
 143        ( 32.900   41.580)       2.638       0.930
 144        ( 51.023   60.722)       2.948       0.913
 145        ( 39.096   47.326)       2.502       0.937
 146        ( 53.077   62.434)       2.844       0.919
 147        ( 51.402   60.297)       2.704       0.927
 148        ( 47.460   56.227)       2.665       0.929
 149        ( 54.643   63.697)       2.752       0.924
 150        ( 37.146   47.951)       3.285       0.892
 151        ( 45.084   54.453)       2.848       0.919
 152        ( 59.882   71.062)       3.402       0.884
 153        ( 57.506   67.051)       2.902       0.916
 154        ( 55.585   64.814)       2.806       0.921
 155        ( 46.055   55.400)       2.841       0.919
 156        ( 51.458   60.172)       2.649       0.930
 157        ( 55.109   64.917)       2.981       0.911
 158        ( 44.564   53.763)       2.796       0.922
 159        ( 50.518   59.834)       2.832       0.920
 160        ( 54.641   63.488)       2.689       0.928
 161        ( 55.821   64.811)       2.733       0.925
 162        ( 45.906   55.148)       2.809       0.921
 163        ( 40.165   48.732)       2.604       0.932
 164        ( 42.518   51.185)       2.635       0.931
 165        ( 52.722   61.264)       2.596       0.933
 166        ( 41.145   49.647)       2.585       0.933
 167        ( 45.443   55.430)       3.036       0.908
 168        ( 49.766   58.487)       2.651       0.930
 169        ( 44.949   54.370)       2.864       0.918
 170        ( 43.951   52.738)       2.671       0.929
 171        ( 46.530   55.632)       2.767       0.923
 172        ( 54.081   63.878)       2.978       0.911
 173        ( 44.986   54.566)       2.912       0.915
 174        ( 49.583   59.664)       3.064       0.906
 175        ( 37.642   45.687)       2.446       0.940
 176        ( 59.394   68.431)       2.747       0.925
 177        ( 36.988   45.785)       2.674       0.928
 178        ( 58.469   67.872)       2.859       0.918
 179        ( 52.525   62.249)       2.956       0.913
 180        ( 38.844   47.086)       2.505       0.937
 181        ( 30.553   39.678)       2.774       0.923
 182        ( 53.881   63.185)       2.828       0.920
 183        ( 42.744   52.377)       2.928       0.914
 184        ( 43.267   52.476)       2.800       0.922
 185        ( 39.935   48.450)       2.588       0.933
 186        ( 39.910   48.845)       2.716       0.926
 187        ( 40.057   48.738)       2.639       0.930
 188        ( 38.642   46.788)       2.476       0.939
 189        ( 53.518   63.441)       3.016       0.909
 190        ( 55.793   64.965)       2.788       0.922
 191        ( 54.699   64.253)       2.904       0.916
 192        ( 44.336   53.368)       2.745       0.925
 193        ( 24.472   35.810)       3.447       0.881
 194        ( 44.440   53.143)       2.646       0.930
 195        ( 57.738   69.252)       3.500       0.877
 196        ( 46.502   57.168)       3.242       0.895
 197        ( 45.569   54.544)       2.728       0.926
 198        ( 35.704   44.637)       2.715       0.926
 199        ( 39.069   50.214)       3.388       0.885
 200        ( 36.512   44.628)       2.467       0.939
 201        ( 31.782   41.579)       2.978       0.911
 202        ( 47.401   56.467)       2.756       0.924
 203        ( 40.581   50.153)       2.909       0.915
 204        ( 64.081   75.928)       3.619       0.869
 205        ( 38.558   47.385)       2.683       0.928
 206        ( 47.318   55.920)       2.615       0.932
 207        ( 42.883   52.195)       2.831       0.920
 208        ( 53.252   62.067)       2.680       0.928
 209        ( 50.616   62.010)       3.464       0.880
 210        ( 63.609   72.922)       2.831       0.920
 211        ( 43.286   53.329)       3.053       0.907
 212        ( 54.588   64.434)       2.993       0.910
 213        ( 47.811   57.244)       2.867       0.918
 214        ( 37.785   46.092)       2.525       0.936
 215        ( 45.536   54.744)       2.799       0.922
 216        ( 36.556   45.025)       2.575       0.934
 217        ( 36.705   45.788)       2.761       0.924
 218        ( 44.141   53.300)       2.784       0.922
 219        ( 52.154   60.972)       2.681       0.928
 220        ( 26.001   35.392)       2.855       0.919
 221        ( 48.215   57.422)       2.799       0.922
 222        ( 55.415   64.311)       2.704       0.927
 223        ( 56.758   65.784)       2.744       0.925
 224        ( 48.349   57.605)       2.813       0.921
 225        ( 46.876   55.927)       2.752       0.924
 226        ( 56.189   65.088)       2.705       0.927
 227        ( 42.189   51.746)       2.905       0.916
 228        ( 48.028   57.203)       2.789       0.922
 229        ( 46.639   55.902)       2.816       0.921
 230        ( 40.424   49.575)       2.782       0.923
 231        ( 75.341   87.821)       3.794       0.856
 232        ( 34.190   42.295)       2.464       0.939
 233        ( 53.502   62.658)       2.783       0.923
 234        ( 38.490   46.954)       2.573       0.934
 235        ( 41.193   49.800)       2.616       0.932
 236        ( 46.910   56.377)       2.879       0.917
 237        ( 35.077   43.362)       2.518       0.937
 238        ( 38.800   48.361)       2.906       0.916
 239        ( 38.678   47.200)       2.590       0.933
 240        ( 51.077   60.398)       2.833       0.920
 241        ( 46.166   54.704)       2.595       0.933
 242        ( 47.564   56.624)       2.754       0.924
 243        ( 44.168   52.881)       2.649       0.930
 244        ( 38.148   46.600)       2.569       0.934
 245        ( 34.198   42.303)       2.464       0.939
 246        ( 59.609   68.929)       2.833       0.920
 247        ( 45.813   54.793)       2.730       0.925
 248        ( 39.298   47.579)       2.517       0.937
 249        ( 46.161   54.735)       2.606       0.932
 250        ( 50.102   59.168)       2.756       0.924
 251        ( 28.978   37.862)       2.701       0.927
 252        ( 28.709   38.127)       2.863       0.918
 253        ( 67.705   78.943)       3.416       0.883
 254        ( 43.481   52.207)       2.652       0.930
 255        ( 55.131   63.942)       2.678       0.928
 256        ( 47.550   56.252)       2.645       0.930
 257        ( 35.291   44.255)       2.725       0.926
 258        ( 45.433   54.628)       2.795       0.922
 259        ( 46.079   56.180)       3.070       0.906
 260        ( 60.949   69.981)       2.746       0.925
 261        ( 35.043   43.541)       2.583       0.933
 262        ( 47.997   56.636)       2.626       0.931
 263        ( 38.716   47.051)       2.534       0.936
 264        ( 39.089   47.525)       2.564       0.934
 265        ( 52.286   61.098)       2.679       0.928
 266        ( 53.377   62.085)       2.647       0.930
 267        ( 40.102   48.619)       2.589       0.933
 268        ( 44.578   53.454)       2.698       0.927
 269        ( 40.207   49.728)       2.894       0.916
 270        ( 34.515   43.730)       2.801       0.922
 271        ( 45.707   55.814)       3.072       0.906
 272        ( 54.345   63.193)       2.690       0.928
 273        ( 52.502   61.795)       2.825       0.920
 274        ( 42.520   51.426)       2.707       0.927
 275        ( 27.415   36.337)       2.712       0.926
 276        ( 50.090   59.169)       2.760       0.924
 277        ( 37.953   47.653)       2.949       0.913
 278        ( 37.152   47.015)       2.998       0.910
 279        ( 49.781   58.832)       2.751       0.924
 280        ( 36.698   45.646)       2.720       0.926
 281        ( 45.909   54.423)       2.588       0.933
 282        ( 44.331   53.011)       2.639       0.930
 283        ( 44.727   53.898)       2.788       0.922
 284        ( 41.199   50.138)       2.717       0.926
 285        ( 26.878   35.926)       2.750       0.924
 286        ( 56.387   66.132)       2.962       0.912
 287        ( 30.957   41.134)       3.094       0.904
 288        ( 52.211   61.863)       2.934       0.914
 289        ( 42.399   51.882)       2.882       0.917
 290        ( 55.391   64.227)       2.686       0.928
 291        ( 48.375   57.532)       2.783       0.923
 292        ( 39.580   48.760)       2.790       0.922
 293        ( 33.387   41.698)       2.526       0.936
 294        ( 36.109   44.951)       2.688       0.928
 295        ( 59.954   69.119)       2.786       0.922
 296        ( 77.506   89.419)       3.621       0.869
 297        ( 45.064   53.741)       2.638       0.930
 298        ( 55.078   64.983)       3.011       0.909
 299        ( 46.192   55.031)       2.687       0.928
 300        ( 35.108   44.909)       2.979       0.911
 301        ( 56.517   66.006)       2.884       0.917
 302        ( 61.869   71.479)       2.921       0.915
 303        ( 46.882   55.610)       2.653       0.930
 304        ( 55.565   64.350)       2.671       0.929
 305        ( 48.032   56.927)       2.704       0.927
 306        ( 33.172   41.562)       2.551       0.935
 307        ( 60.284   69.489)       2.798       0.922
 308        ( 41.129   50.719)       2.915       0.915
 309        ( 42.990   52.073)       2.761       0.924
 310        ( 51.290   60.089)       2.675       0.928
 311        ( 43.797   52.699)       2.706       0.927
 312        ( 31.649   41.222)       2.910       0.915
 313        ( 55.022   63.782)       2.663       0.929
 314        ( 51.837   60.779)       2.718       0.926
 315        ( 44.966   53.844)       2.699       0.927
 316        ( 43.421   52.472)       2.752       0.924
 317        ( 49.487   58.854)       2.848       0.919
 318        ( 51.903   61.079)       2.789       0.922
 319        ( 34.060   42.852)       2.672       0.929
 320        ( 39.723   50.346)       3.229       0.896
 321        ( 50.121   59.647)       2.896       0.916
 322        ( 37.270   46.104)       2.685       0.928
 323        ( 49.869   59.518)       2.933       0.914
 324        ( 35.964   45.968)       3.041       0.908
 325        ( 49.975   59.747)       2.970       0.912
 326        ( 39.263   48.338)       2.758       0.924
 327        ( 51.175   60.164)       2.732       0.925
 328        ( 55.083   64.182)       2.766       0.923
 329        ( 35.358   44.036)       2.638       0.930
 330        ( 48.153   58.290)       3.082       0.905
 331        ( 69.839   81.179)       3.447       0.881
 332        ( 45.535   54.444)       2.708       0.927
 333        ( 42.160   51.246)       2.762       0.924
 334        ( 47.771   56.821)       2.751       0.924
 335        ( 48.803   58.435)       2.928       0.914
 336        ( 52.899   62.475)       2.911       0.915
 337        ( 34.358   43.714)       2.844       0.919
 338        ( 64.975   75.606)       3.232       0.896
 339        ( 28.668   40.294)       3.534       0.875
 340        ( 49.686   59.570)       3.004       0.910
 341        ( 45.723   54.317)       2.612       0.932
 342        ( 38.740   47.340)       2.614       0.932
 343        ( 45.570   54.851)       2.821       0.920
 344        ( 48.649   58.251)       2.919       0.915
 345        ( 54.697   63.980)       2.822       0.920
 346        ( 47.571   56.657)       2.762       0.924
 347        ( 44.689   53.660)       2.727       0.926
 348        ( 54.913   63.815)       2.706       0.927
 349        ( 60.460   69.446)       2.732       0.925
 350        ( 35.668   43.823)       2.479       0.939
 351        ( 39.149   48.207)       2.754       0.924
 352        ( 51.290   60.629)       2.839       0.919
 353        ( 41.668   50.055)       2.550       0.935
 354        ( 51.740   61.382)       2.931       0.914
 355        ( 44.681   53.859)       2.790       0.922
 356        ( 39.345   48.859)       2.892       0.916
 357        ( 54.599   64.928)       3.140       0.901
 358        ( 25.628   34.345)       2.650       0.930
 359        ( 22.805   32.376)       2.909       0.915
 360        ( 42.149   50.432)       2.518       0.937
 361        ( 39.053   47.548)       2.582       0.933
 362        ( 39.495   48.028)       2.594       0.933
 363        ( 58.911   68.734)       2.986       0.911
 364        ( 54.623   64.396)       2.971       0.912
 365        ( 50.035   59.387)       2.843       0.919
 366        ( 29.994   38.494)       2.584       0.933
 367        ( 44.072   53.666)       2.916       0.915
 368        ( 41.587   51.266)       2.942       0.913
 369        ( 42.388   51.038)       2.630       0.931
 370        ( 50.473   59.761)       2.823       0.920
 371        ( 37.135   47.415)       3.125       0.902
 372        ( 45.951   54.772)       2.681       0.928
 373        ( 51.026   59.997)       2.727       0.926
 374        ( 36.686   46.452)       2.969       0.912
 375        ( 51.114   60.084)       2.727       0.926
 376        ( 58.911   68.734)       2.986       0.911
 377        ( 66.776   77.318)       3.205       0.897
 378        ( 35.993   47.755)       3.575       0.872
 379        ( 56.322   65.318)       2.735       0.925
 380        ( 50.269   58.898)       2.623       0.931
 381        ( 42.179   50.492)       2.527       0.936
 382        ( 39.193   49.260)       3.060       0.906
 383        ( 45.157   55.861)       3.254       0.894
 384        ( 46.123   57.207)       3.369       0.886
 385        ( 62.869   72.193)       2.835       0.920
 386        ( 41.662   51.802)       3.082       0.905
 387        ( 50.607   59.239)       2.624       0.931
 388        ( 55.552   64.526)       2.728       0.926
 389        ( 51.639   61.295)       2.935       0.914
 390        ( 44.738   53.228)       2.581       0.933
 391        ( 44.738   53.228)       2.581       0.933
 392        ( 54.223   63.638)       2.862       0.918
 393        ( 55.695   64.601)       2.707       0.927
 394        ( 52.568   61.432)       2.695       0.927
 395        ( 49.854   59.425)       2.909       0.915
 396        ( 39.597   48.695)       2.766       0.924
 397        ( 42.777   51.539)       2.664       0.929
 398        ( 43.499   52.486)       2.733       0.925
 399        ( 32.340   41.629)       2.824       0.920
 400        ( 52.217   61.019)       2.675       0.928
 401        ( 58.720   67.993)       2.819       0.921
 402        ( 59.617   70.516)       3.313       0.890
 403        ( 41.140   51.211)       3.061       0.906
 404        ( 38.058   46.838)       2.669       0.929
 405        ( 37.817   46.224)       2.556       0.935
 406        ( 30.173   39.551)       2.851       0.919
 407        ( 38.046   47.984)       3.021       0.909
 408        ( 38.543   46.624)       2.457       0.940
 409        ( 58.248   68.164)       3.014       0.909
 410        ( 65.102   75.617)       3.196       0.898
 411        ( 36.742   45.354)       2.618       0.931
 412        ( 53.310   65.046)       3.568       0.873
 413        ( 38.486   47.291)       2.677       0.928
 414        ( 33.883   42.202)       2.529       0.936
 415        ( 52.874   62.846)       3.031       0.908
 416        ( 57.016   67.429)       3.165       0.900
 417        ( 61.222   71.466)       3.114       0.903
 418        ( 42.893   51.503)       2.617       0.931
 419        ( 34.180   42.565)       2.549       0.935
 420        ( 43.556   53.206)       2.933       0.914
 421        ( 48.024   56.778)       2.661       0.929
 422        ( 31.335   40.348)       2.740       0.925
 423        ( 47.504   56.930)       2.865       0.918
 424        ( 26.208   35.081)       2.697       0.927
 425        ( 39.823   49.218)       2.856       0.918
 426        ( 31.373   39.629)       2.510       0.937
 427        ( 63.089   72.327)       2.808       0.921
 428        ( 39.142   47.449)       2.525       0.936
 429        ( 11.473   23.035)       3.515       0.876
 430        ( 39.936   48.520)       2.609       0.932
 431        ( 19.581   29.678)       3.069       0.906
 432        ( 53.562   62.273)       2.648       0.930
 433        ( 69.188   80.937)       3.571       0.872
 434        ( 53.236   64.764)       3.504       0.877
 435        ( 20.186   31.007)       3.289       0.892
 436        ( 35.388   44.074)       2.640       0.930
 437        ( 54.433   63.828)       2.856       0.918
 438        ( 29.793   39.079)       2.823       0.920
 439        ( 29.662   38.437)       2.667       0.929
 440        ( 49.978   60.664)       3.248       0.894
 441        ( 50.740   61.144)       3.162       0.900
 442        ( 47.989   56.747)       2.662       0.929
 443        ( 49.258   59.369)       3.074       0.906
 444        ( 49.317   59.930)       3.226       0.896
 445        ( 49.889   58.820)       2.715       0.926
 446        ( 47.250   56.337)       2.762       0.924
 447        ( 39.021   48.231)       2.800       0.922
 448        ( 43.935   53.210)       2.819       0.921
 449        ( 43.958   55.475)       3.501       0.877
 450        ( 46.726   56.650)       3.017       0.909
 451        ( 56.453   65.449)       2.735       0.925
 452        ( 43.081   51.528)       2.568       0.934
 453        ( 26.221   35.053)       2.685       0.928
 454        ( 53.966   63.688)       2.955       0.913
 455        ( 35.073   44.259)       2.792       0.922
 456        ( 37.003   45.996)       2.734       0.925
 457        ( 40.492   49.429)       2.716       0.926
 458        ( 34.803   43.843)       2.748       0.924
 459        ( 49.206   60.793)       3.522       0.876
 460        ( 43.535   52.432)       2.705       0.927
 461        ( 47.959   56.698)       2.657       0.929
 462        ( 55.738   64.624)       2.701       0.927
 463        ( 46.692   55.279)       2.610       0.932
 464        ( 33.003   41.325)       2.530       0.936
 465        ( 51.293   60.950)       2.936       0.914
 466        ( 39.685   48.983)       2.826       0.920
 467        ( 41.533   50.226)       2.642       0.930
 468        ( 64.856   74.293)       2.869       0.918
 469        ( 51.634   61.881)       3.115       0.903
 470        ( 51.604   61.210)       2.920       0.915
 471        ( 51.588   61.935)       3.145       0.901
 472        ( 44.586   53.831)       2.810       0.921
 473        ( 36.710   45.671)       2.724       0.926
 474        ( 61.687   70.918)       2.806       0.921
 475        ( 39.065   47.285)       2.499       0.938
 476        ( 30.414   40.213)       2.979       0.911
 477        ( 37.759   47.209)       2.873       0.917
 478        ( 39.118   48.026)       2.708       0.927
 479        ( 41.956   51.032)       2.759       0.924
 480        ( 68.054   80.264)       3.711       0.862
 481        ( 24.727   33.744)       2.741       0.925
 482        ( 59.916   69.077)       2.785       0.922
 483        ( 68.982   80.065)       3.369       0.886
 484        ( 31.671   42.474)       3.284       0.892
 485        ( 41.429   51.134)       2.950       0.913
 486        ( 30.017   39.737)       2.955       0.913
 487        ( 55.584   64.584)       2.736       0.925
 488        ( 16.312   27.210)       3.313       0.890
 489        ( 28.566   38.527)       3.028       0.908
 490        ( 50.059   59.146)       2.762       0.924
 491        ( 64.163   73.512)       2.842       0.919
 492        ( 36.987   45.308)       2.530       0.936
 493        ( 39.631   48.675)       2.749       0.924
 494        ( 44.036   53.723)       2.945       0.913
 495        ( 38.393   47.048)       2.631       0.931
 496        ( 48.541   58.774)       3.111       0.903
 497        ( 33.249   42.140)       2.702       0.927
 498        ( 57.208   66.245)       2.749       0.924
 499        ( 43.968   53.337)       2.848       0.919
 500        ( 51.375   60.666)       2.824       0.920


PRECISION OF FACTOR SCORES 

FACTOR:  2 

Case         Approximate 95%       Posterior   Reliability
             confidence interval   SE         

   1        ( 51.387   63.455)       3.668       0.865
   2        ( 48.371   60.164)       3.585       0.871
   3        ( 41.674   52.136)       3.180       0.899
   4        ( 28.915   39.256)       3.144       0.901
   5        ( 34.748   44.486)       2.960       0.912
   6        ( 39.281   49.878)       3.221       0.896
   7        ( 44.211   55.186)       3.336       0.889
   8        ( 50.188   61.991)       3.588       0.871
   9        ( 49.600   60.650)       3.359       0.887
  10        ( 40.690   51.742)       3.359       0.887
  11        ( 55.763   69.578)       4.200       0.824
  12        ( 47.658   59.253)       3.525       0.876
  13        ( 54.409   67.284)       3.916       0.847
  14        ( 45.560   56.166)       3.224       0.896
  15        ( 50.975   62.545)       3.517       0.876
  16        ( 39.539   50.923)       3.461       0.880
  17        ( 42.146   52.353)       3.103       0.904
  18        ( 39.175   49.380)       3.102       0.904
  19        ( 43.971   55.205)       3.415       0.883
  20        ( 40.979   52.012)       3.354       0.888
  21        ( 21.477   32.769)       3.433       0.882
  22        ( 38.762   48.483)       2.955       0.913
  23        ( 36.667   47.304)       3.234       0.895
  24        ( 62.165   78.252)       4.890       0.761
  25        ( 33.999   46.170)       3.700       0.863
  26        ( 36.432   46.286)       2.996       0.910
  27        ( 65.766   83.538)       5.402       0.708
  28        ( 28.420   38.127)       2.951       0.913
  29        ( 41.747   51.487)       2.961       0.912
  30        ( 49.013   60.619)       3.528       0.876
  31        ( 36.417   46.684)       3.121       0.903
  32        ( 35.876   45.317)       2.870       0.918
  33        ( 25.404   34.684)       2.821       0.920
  34        ( 34.206   45.649)       3.479       0.879
  35        ( 37.142   47.546)       3.163       0.900
  36        ( 53.263   65.354)       3.675       0.865
  37        ( 39.955   49.816)       2.997       0.910
  38        ( 49.592   60.840)       3.419       0.883
  39        ( 50.016   61.694)       3.550       0.874
  40        ( 54.783   67.620)       3.902       0.848
  41        ( 36.223   46.004)       2.973       0.912
  42        ( 49.104   61.193)       3.675       0.865
  43        ( 45.211   55.777)       3.212       0.897
  44        ( 61.559   77.832)       4.947       0.755
  45        ( 37.684   47.575)       3.007       0.910
  46        ( 48.448   59.290)       3.296       0.891
  47        ( 38.008   49.210)       3.405       0.884
  48        ( 49.231   61.596)       3.759       0.859
  49        ( 40.853   51.529)       3.245       0.895
  50        ( 46.025   56.980)       3.330       0.889
  51        ( 52.818   65.847)       3.961       0.843
  52        ( 33.189   43.237)       3.054       0.907
  53        ( 39.790   50.385)       3.221       0.896
  54        ( 35.134   45.628)       3.190       0.898
  55        ( 48.826   60.239)       3.469       0.880
  56        ( 49.174   60.843)       3.547       0.874
  57        ( 34.594   45.488)       3.312       0.890
  58        ( 17.550   27.310)       2.967       0.912
  59        ( 44.636   54.795)       3.088       0.905
  60        ( 51.129   62.561)       3.475       0.879
  61        ( 27.975   39.368)       3.463       0.880
  62        ( 44.759   55.499)       3.265       0.893
  63        ( 47.896   59.465)       3.517       0.876
  64        ( 54.013   68.462)       4.392       0.807
  65        ( 40.283   51.526)       3.418       0.883
  66        ( 46.186   56.468)       3.125       0.902
  67        ( 49.036   60.634)       3.526       0.876
  68        ( 51.619   62.929)       3.438       0.882
  69        ( 43.934   54.362)       3.170       0.900
  70        ( 62.311   79.056)       5.090       0.741
  71        ( 61.743   78.043)       4.955       0.754
  72        ( 30.360   40.195)       2.990       0.911
  73        ( 33.300   43.524)       3.108       0.903
  74        ( 36.871   46.986)       3.075       0.905
  75        ( 63.147   80.250)       5.199       0.730
  76        ( 49.034   60.287)       3.421       0.883
  77        ( 37.188   47.686)       3.191       0.898
  78        ( 50.392   61.878)       3.492       0.878
  79        ( 50.919   64.887)       4.246       0.820
  80        ( 54.065   66.537)       3.792       0.856
  81        ( 32.536   42.918)       3.156       0.900
  82        ( 53.940   66.305)       3.759       0.859
  83        ( 32.999   44.653)       3.542       0.875
  84        ( 48.549   59.653)       3.375       0.886
  85        ( 38.272   48.127)       2.996       0.910
  86        ( 41.197   51.280)       3.065       0.906
  87        ( 39.112   49.048)       3.020       0.909
  88        ( 40.375   51.883)       3.498       0.878
  89        ( 42.569   53.435)       3.303       0.891
  90        ( 29.015   39.473)       3.179       0.899
  91        ( 54.171   67.928)       4.182       0.825
  92        ( 54.110   66.746)       3.841       0.852
  93        ( 48.248   61.997)       4.179       0.825
  94        ( 47.586   58.016)       3.171       0.899
  95        ( 62.354   79.087)       5.086       0.741
  96        ( 39.344   49.578)       3.111       0.903
  97        ( 61.145   76.838)       4.771       0.772
  98        ( 46.398   57.661)       3.424       0.883
  99        ( 34.602   45.103)       3.192       0.898
 100        ( 29.382   38.913)       2.897       0.916
 101        ( 42.695   53.909)       3.409       0.884
 102        ( 56.153   70.431)       4.340       0.812
 103        ( 48.136   58.862)       3.260       0.894
 104        ( 53.895   66.204)       3.741       0.860
 105        ( 44.204   55.038)       3.293       0.892
 106        ( 47.001   59.227)       3.717       0.862
 107        ( 51.067   62.249)       3.399       0.884
 108        ( 49.767   62.738)       3.943       0.845
 109        ( 35.345   45.630)       3.126       0.902
 110        ( 38.807   49.769)       3.332       0.889
 111        ( 44.393   54.738)       3.145       0.901
 112        ( 60.060   75.435)       4.681       0.781
 113        ( 37.774   47.658)       3.004       0.910
 114        ( 47.674   58.735)       3.362       0.887
 115        ( 33.671   45.674)       3.649       0.867
 116        ( 46.666   57.893)       3.413       0.884
 117        ( 43.949   54.786)       3.294       0.891
 118        ( 47.410   57.826)       3.166       0.900
 119        ( 48.765   60.199)       3.476       0.879
 120        ( 39.406   49.350)       3.023       0.909
 121        ( 46.026   57.192)       3.394       0.885
 122        ( 30.762   40.179)       2.862       0.918
 123        ( 35.270   45.225)       3.026       0.908
 124        ( 49.848   60.921)       3.366       0.887
 125        ( 41.580   52.621)       3.356       0.887
 126        ( 46.869   58.038)       3.395       0.885
 127        ( 28.876   38.419)       2.901       0.916
 128        ( 39.435   49.838)       3.162       0.900
 129        ( 48.411   59.782)       3.457       0.881
 130        ( 33.702   43.759)       3.057       0.907
 131        ( 33.585   42.731)       2.780       0.923
 132        ( 44.836   55.258)       3.168       0.900
 133        ( 36.680   46.180)       2.888       0.917
 134        ( 51.839   67.665)       4.811       0.769
 135        ( 49.715   61.456)       3.569       0.873
 136        ( 33.219   44.131)       3.317       0.890
 137        ( 42.831   53.907)       3.367       0.887
 138        ( 41.284   52.201)       3.318       0.890
 139        ( 38.549   48.060)       2.891       0.916
 140        ( 48.323   59.349)       3.352       0.888
 141        ( 44.027   55.818)       3.584       0.872
 142        ( 40.230   50.787)       3.209       0.897
 143        ( 37.948   48.884)       3.325       0.889
 144        ( 43.527   53.791)       3.120       0.903
 145        ( 32.619   42.731)       3.074       0.906
 146        ( 49.093   60.275)       3.399       0.884
 147        ( 34.533   43.960)       2.866       0.918
 148        ( 39.457   50.387)       3.322       0.890
 149        ( 44.028   54.342)       3.135       0.902
 150        ( 37.731   49.746)       3.652       0.867
 151        ( 60.517   76.025)       4.714       0.778
 152        ( 43.007   53.343)       3.142       0.901
 153        ( 43.674   55.239)       3.515       0.876
 154        ( 45.764   57.386)       3.533       0.875
 155        ( 52.514   64.345)       3.596       0.871
 156        ( 49.752   60.862)       3.377       0.886
 157        ( 53.924   66.287)       3.758       0.859
 158        ( 41.474   51.642)       3.091       0.904
 159        ( 48.365   59.911)       3.510       0.877
 160        ( 49.818   61.341)       3.503       0.877
 161        ( 49.120   60.884)       3.576       0.872
 162        ( 43.558   53.821)       3.120       0.903
 163        ( 33.529   42.718)       2.793       0.922
 164        ( 45.703   56.318)       3.227       0.896
 165        ( 53.038   65.141)       3.679       0.865
 166        ( 43.388   54.730)       3.448       0.881
 167        ( 46.579   59.740)       4.001       0.840
 168        ( 36.816   46.134)       2.832       0.920
 169        ( 40.016   50.402)       3.157       0.900
 170        ( 47.999   59.208)       3.407       0.884
 171        ( 58.564   73.202)       4.450       0.802
 172        ( 21.754   31.398)       2.932       0.914
 173        ( 62.993   80.237)       5.242       0.725
 174        ( 30.684   40.494)       2.982       0.911
 175        ( 43.091   53.481)       3.158       0.900
 176        ( 41.787   52.479)       3.250       0.894
 177        ( 47.553   58.914)       3.454       0.881
 178        ( 37.595   48.483)       3.310       0.890
 179        ( 35.761   45.820)       3.058       0.907
 180        ( 42.803   53.556)       3.269       0.893
 181        ( 42.701   53.244)       3.205       0.897
 182        ( 53.225   65.035)       3.590       0.871
 183        ( 44.441   54.988)       3.206       0.897
 184        ( 45.592   59.017)       4.081       0.833
 185        ( 38.904   49.193)       3.128       0.902
 186        ( 37.981   47.743)       2.967       0.912
 187        ( 46.319   57.578)       3.423       0.883
 188        ( 32.908   42.855)       3.024       0.909
 189        ( 49.515   60.478)       3.333       0.889
 190        ( 32.720   46.542)       4.202       0.823
 191        ( 46.703   58.813)       3.681       0.864
 192        ( 56.197   69.532)       4.054       0.836
 193        ( 45.157   56.459)       3.436       0.882
 194        ( 54.272   66.709)       3.781       0.857
 195        ( 51.216   65.741)       4.416       0.805
 196        ( 36.873   47.437)       3.211       0.897
 197        ( 42.146   52.723)       3.215       0.897
 198        ( 37.345   48.525)       3.399       0.884
 199        ( 47.767   60.309)       3.812       0.855
 200        ( 42.257   52.142)       3.005       0.910
 201        ( 49.553   60.629)       3.367       0.887
 202        ( 51.635   63.595)       3.636       0.868
 203        ( 43.107   53.498)       3.159       0.900
 204        ( 48.212   59.800)       3.523       0.876
 205        ( 47.142   57.844)       3.253       0.894
 206        ( 44.356   54.979)       3.229       0.896
 207        ( 49.984   62.247)       3.728       0.861
 208        ( 61.819   77.714)       4.832       0.767
 209        ( 53.434   65.991)       3.817       0.854
 210        ( 48.803   59.721)       3.319       0.890
 211        ( 55.354   68.096)       3.873       0.850
 212        ( 39.143   49.600)       3.179       0.899
 213        ( 43.068   53.675)       3.224       0.896
 214        ( 31.777   41.081)       2.828       0.920
 215        ( 46.227   56.936)       3.255       0.894
 216        ( 35.537   45.008)       2.879       0.917
 217        ( 33.802   43.885)       3.065       0.906
 218        ( 38.536   48.242)       2.950       0.913
 219        ( 58.053   72.149)       4.285       0.816
 220        ( 29.698   39.777)       3.064       0.906
 221        ( 50.040   62.314)       3.731       0.861
 222        ( 34.993   45.196)       3.102       0.904
 223        ( 47.969   59.359)       3.462       0.880
 224        ( 50.742   61.931)       3.401       0.884
 225        ( 35.626   45.067)       2.870       0.918
 226        ( 39.295   49.690)       3.160       0.900
 227        ( 41.593   52.231)       3.234       0.895
 228        ( 36.621   46.495)       3.001       0.910
 229        ( 40.522   50.684)       3.089       0.905
 230        ( 34.148   46.019)       3.609       0.870
 231        ( 43.207   53.582)       3.154       0.901
 232        ( 42.225   52.113)       3.006       0.910
 233        ( 39.515   51.899)       3.764       0.858
 234        ( 53.830   65.856)       3.656       0.866
 235        ( 43.959   53.986)       3.048       0.907
 236        ( 59.345   74.034)       4.465       0.801
 237        ( 30.974   40.308)       2.837       0.919
 238        ( 59.982   75.246)       4.640       0.785
 239        ( 39.944   49.630)       2.944       0.913
 240        ( 25.840   38.141)       3.739       0.860
 241        ( 45.662   56.260)       3.222       0.896
 242        ( 53.053   65.149)       3.677       0.865
 243        ( 38.691   48.440)       2.964       0.912
 244        ( 46.571   57.499)       3.322       0.890
 245        ( 39.303   49.159)       2.996       0.910
 246        ( 56.674   70.431)       4.182       0.825
 247        ( 37.207   46.992)       2.975       0.912
 248        ( 40.916   50.945)       3.048       0.907
 249        ( 36.834   47.521)       3.249       0.894
 250        ( 51.688   62.981)       3.433       0.882
 251        ( 41.465   51.580)       3.075       0.905
 252        ( 38.429   49.416)       3.340       0.888
 253        ( 48.688   60.185)       3.495       0.878
 254        ( 36.404   46.270)       2.999       0.910
 255        ( 39.821   50.120)       3.131       0.902
 256        ( 40.963   50.673)       2.952       0.913
 257        ( 37.916   49.066)       3.389       0.885
 258        ( 44.300   55.017)       3.258       0.894
 259        ( 46.872   58.628)       3.574       0.872
 260        ( 47.274   57.644)       3.152       0.901
 261        ( 25.420   36.274)       3.299       0.891
 262        ( 40.240   50.002)       2.967       0.912
 263        ( 45.322   56.407)       3.370       0.886
 264        ( 60.441   75.950)       4.714       0.778
 265        ( 35.857   48.206)       3.754       0.859
 266        ( 51.933   63.403)       3.487       0.878
 267        ( 40.253   50.495)       3.114       0.903
 268        ( 52.731   64.739)       3.650       0.867
 269        ( 42.330   52.288)       3.027       0.908
 270        ( 40.484   50.612)       3.079       0.905
 271        ( 59.047   73.927)       4.523       0.795
 272        ( 40.474   50.497)       3.047       0.907
 273        ( 50.413   62.806)       3.767       0.858
 274        ( 35.720   45.739)       3.046       0.907
 275        ( 35.784   46.073)       3.128       0.902
 276        ( 54.446   67.187)       3.873       0.850
 277        ( 49.075   60.650)       3.518       0.876
 278        ( 26.683   35.893)       2.800       0.922
 279        ( 39.815   50.115)       3.131       0.902
 280        ( 34.907   44.243)       2.838       0.919
 281        ( 52.211   64.864)       3.846       0.852
 282        ( 39.148   50.080)       3.323       0.890
 283        ( 45.048   55.254)       3.103       0.904
 284        ( 38.438   48.168)       2.958       0.913
 285        ( 39.339   49.586)       3.115       0.903
 286        ( 32.740   42.493)       2.965       0.912
 287        ( 60.402   76.090)       4.769       0.773
 288        ( 33.447   43.294)       2.993       0.910
 289        ( 54.407   67.163)       3.877       0.850
 290        ( 58.538   73.288)       4.490       0.798
 291        ( 45.930   56.112)       3.095       0.904
 292        ( 39.579   49.803)       3.108       0.903
 293        ( 60.350   75.831)       4.706       0.779
 294        ( 33.459   43.684)       3.108       0.903
 295        ( 37.073   46.856)       2.974       0.912
 296        ( 54.777   67.340)       3.819       0.854
 297        ( 40.225   50.816)       3.219       0.896
 298        ( 53.787   67.056)       4.033       0.837
 299        ( 46.983   58.353)       3.456       0.881
 300        ( 57.782   72.387)       4.440       0.803
 301        ( 61.790   78.138)       4.969       0.753
 302        ( 40.739   51.682)       3.327       0.889
 303        ( 40.859   52.122)       3.424       0.883
 304        ( 49.563   61.064)       3.496       0.878
 305        ( 42.829   53.989)       3.392       0.885
 306        ( 34.572   44.602)       3.049       0.907
 307        ( 25.766   35.651)       3.005       0.910
 308        ( 49.999   61.030)       3.353       0.888
 309        ( 49.642   61.408)       3.576       0.872
 310        ( 62.712   79.590)       5.131       0.737
 311        ( 62.044   78.337)       4.953       0.755
 312        ( 45.765   58.562)       3.890       0.849
 313        ( 51.039   62.760)       3.563       0.873
 314        ( 44.960   55.462)       3.192       0.898
 315        ( 39.912   50.540)       3.231       0.896
 316        ( 31.012   41.488)       3.184       0.899
 317        ( 43.403   55.395)       3.646       0.867
 318        ( 47.761   59.980)       3.714       0.862
 319        ( 63.370   81.007)       5.361       0.713
 320        ( 26.081   37.831)       3.572       0.872
 321        ( 51.904   64.308)       3.770       0.858
 322        ( 39.483   51.101)       3.532       0.875
 323        ( 56.150   69.406)       4.029       0.838
 324        ( 26.700   36.718)       3.045       0.907
 325        ( 44.047   54.422)       3.154       0.901
 326        ( 27.221   37.975)       3.269       0.893
 327        ( 52.529   64.520)       3.645       0.867
 328        ( 37.867   47.874)       3.042       0.907
 329        ( 53.042   64.866)       3.594       0.871
 330        ( 66.844   85.276)       5.603       0.686
 331        ( 39.497   49.549)       3.056       0.907
 332        ( 42.815   53.968)       3.390       0.885
 333        ( 44.299   54.457)       3.088       0.905
 334        ( 51.847   63.183)       3.446       0.881
 335        ( 50.725   62.463)       3.568       0.873
 336        ( 57.831   72.528)       4.468       0.800
 337        ( 54.284   67.774)       4.101       0.832
 338        ( 59.269   74.304)       4.570       0.791
 339        ( 59.512   74.666)       4.607       0.788
 340        ( 50.679   63.056)       3.764       0.858
 341        ( 26.661   36.262)       2.918       0.915
 342        ( 26.031   36.840)       3.286       0.892
 343        ( 40.673   50.472)       2.979       0.911
 344        ( 51.791   63.629)       3.599       0.871
 345        ( 42.545   52.843)       3.130       0.902
 346        ( 44.724   55.808)       3.369       0.886
 347        ( 46.033   59.027)       3.950       0.844
 348        ( 53.563   66.415)       3.907       0.847
 349        ( 41.707   51.517)       2.982       0.911
 350        ( 32.862   43.235)       3.153       0.901
 351        ( 38.746   49.612)       3.303       0.891
 352        ( 40.894   51.985)       3.371       0.886
 353        ( 48.421   59.450)       3.353       0.888
 354        ( 46.219   57.308)       3.371       0.886
 355        ( 35.105   45.336)       3.110       0.903
 356        ( 46.562   57.728)       3.394       0.885
 357        ( 33.586   44.456)       3.304       0.891
 358        ( 37.232   47.884)       3.238       0.895
 359        ( 44.672   55.894)       3.411       0.884
 360        ( 54.552   67.717)       4.002       0.840
 361        ( 46.904   57.980)       3.367       0.887
 362        ( 49.561   60.612)       3.359       0.887
 363        ( 60.599   76.007)       4.684       0.781
 364        ( 56.328   69.633)       4.044       0.836
 365        ( 48.199   59.711)       3.499       0.878
 366        ( 41.425   51.527)       3.071       0.906
 367        ( 44.188   55.563)       3.458       0.880
 368        ( 32.956   42.741)       2.974       0.912
 369        ( 49.165   61.196)       3.657       0.866
 370        ( 47.502   58.810)       3.438       0.882
 371        ( 21.526   32.326)       3.283       0.892
 372        ( 38.388   49.139)       3.268       0.893
 373        ( 34.972   44.299)       2.835       0.920
 374        ( 49.882   60.977)       3.373       0.886
 375        ( 34.733   44.199)       2.878       0.917
 376        ( 60.599   76.007)       4.684       0.781
 377        ( 45.490   55.820)       3.140       0.901
 378        ( 26.095   35.522)       2.865       0.918
 379        ( 52.678   64.721)       3.661       0.866
 380        ( 50.856   62.460)       3.527       0.876
 381        ( 40.589   50.656)       3.060       0.906
 382        ( 52.646   64.612)       3.638       0.868
 383        ( 61.945   78.632)       5.073       0.743
 384        ( 37.471   47.578)       3.072       0.906
 385        ( 63.784   80.640)       5.124       0.737
 386        ( 44.940   56.085)       3.388       0.885
 387        ( 52.278   63.699)       3.472       0.879
 388        ( 60.972   76.473)       4.712       0.778
 389        ( 53.083   65.418)       3.750       0.859
 390        ( 35.835   45.597)       2.967       0.912
 391        ( 35.835   45.597)       2.967       0.912
 392        ( 49.202   60.367)       3.394       0.885
 393        ( 52.492   64.717)       3.716       0.862
 394        ( 37.305   47.093)       2.975       0.911
 395        ( 27.642   38.253)       3.226       0.896
 396        ( 31.925   41.390)       2.877       0.917
 397        ( 59.265   73.910)       4.452       0.802
 398        ( 59.778   74.992)       4.627       0.786
 399        ( 52.572   68.696)       4.901       0.760
 400        ( 38.508   48.084)       2.911       0.915
 401        ( 50.968   63.862)       3.920       0.846
 402        ( 56.482   70.291)       4.198       0.824
 403        ( 42.295   52.446)       3.086       0.905
 404        ( 55.255   67.953)       3.860       0.851
 405        ( 35.696   46.290)       3.220       0.896
 406        ( 38.232   48.218)       3.036       0.908
 407        ( 40.763   50.742)       3.033       0.908
 408        ( 56.501   70.527)       4.264       0.818
 409        ( 55.395   68.857)       4.092       0.833
 410        ( 40.157   50.108)       3.025       0.908
 411        ( 60.157   75.481)       4.658       0.783
 412        ( 52.142   64.388)       3.722       0.861
 413        ( 65.317   83.650)       5.573       0.689
 414        ( 44.828   55.771)       3.326       0.889
 415        ( 40.665   50.356)       2.946       0.913
 416        ( 67.010   85.023)       5.476       0.700
 417        ( 30.715   43.395)       3.855       0.851
 418        ( 49.823   61.429)       3.528       0.876
 419        ( 38.379   48.334)       3.026       0.908
 420        ( 51.363   62.837)       3.488       0.878
 421        ( 48.369   59.879)       3.499       0.878
 422        ( 42.902   53.982)       3.368       0.887
 423        ( 36.361   47.889)       3.504       0.877
 424        ( 47.989   59.965)       3.641       0.867
 425        ( 31.822   42.544)       3.259       0.894
 426        ( 54.113   66.460)       3.753       0.859
 427        ( 47.125   58.308)       3.400       0.884
 428        ( 46.867   58.630)       3.575       0.872
 429        ( 31.236   41.667)       3.171       0.899
 430        ( 46.736   58.870)       3.689       0.864
 431        ( 45.160   57.085)       3.625       0.869
 432        ( 49.755   62.154)       3.769       0.858
 433        ( 60.828   76.416)       4.738       0.775
 434        ( 54.233   67.704)       4.095       0.832
 435        ( 39.805   50.313)       3.194       0.898
 436        ( 36.743   48.340)       3.525       0.876
 437        ( 61.909   78.163)       4.941       0.756
 438        ( 39.007   50.089)       3.369       0.887
 439        ( 31.021   40.921)       3.010       0.909
 440        ( 63.425   80.797)       5.280       0.721
 441        ( 35.418   45.716)       3.130       0.902
 442        ( 41.354   51.662)       3.133       0.902
 443        ( 45.947   57.822)       3.610       0.870
 444        ( 53.556   65.779)       3.715       0.862
 445        ( 34.608   45.171)       3.211       0.897
 446        ( 28.140   37.815)       2.941       0.914
 447        ( 34.239   44.342)       3.071       0.906
 448        ( 40.810   51.942)       3.384       0.885
 449        ( 39.339   50.580)       3.417       0.883
 450        ( 40.750   50.768)       3.045       0.907
 451        ( 53.936   66.274)       3.751       0.859
 452        ( 42.080   53.914)       3.598       0.871
 453        ( 35.456   46.498)       3.359       0.887
 454        ( 48.124   58.753)       3.231       0.896
 455        ( 30.231   40.140)       3.012       0.909
 456        ( 30.946   41.095)       3.085       0.905
 457        ( 44.088   54.627)       3.204       0.897
 458        ( 38.045   47.856)       2.982       0.911
 459        ( 38.685   50.272)       3.522       0.876
 460        ( 42.110   53.270)       3.393       0.885
 461        ( 39.005   48.938)       3.019       0.909
 462        ( 49.798   60.904)       3.376       0.886
 463        ( 36.836   47.843)       3.346       0.888
 464        ( 40.884   50.786)       3.010       0.909
 465        ( 68.193   86.348)       5.519       0.695
 466        ( 35.126   45.543)       3.167       0.900
 467        ( 44.205   54.599)       3.160       0.900
 468        ( 37.225   47.710)       3.187       0.898
 469        ( 40.306   52.800)       3.798       0.856
 470        ( 46.383   58.916)       3.810       0.855
 471        ( 43.218   53.306)       3.066       0.906
 472        ( 45.575   56.936)       3.454       0.881
 473        ( 44.589   55.891)       3.436       0.882
 474        ( 53.437   65.119)       3.551       0.874
 475        ( 27.757   38.001)       3.114       0.903
 476        ( 41.292   51.837)       3.205       0.897
 477        ( 37.055   47.107)       3.056       0.907
 478        ( 40.016   50.446)       3.170       0.899
 479        ( 48.179   59.322)       3.387       0.885
 480        ( 67.158   85.216)       5.489       0.699
 481        ( 28.244   38.573)       3.140       0.901
 482        ( 33.268   43.492)       3.108       0.903
 483        ( 60.846   76.439)       4.740       0.775
 484        ( 31.870   42.845)       3.336       0.889
 485        ( 45.447   57.404)       3.635       0.868
 486        ( 38.227   48.756)       3.201       0.898
 487        ( 36.646   46.737)       3.067       0.906
 488        ( 50.028   61.581)       3.512       0.877
 489        ( 30.765   40.112)       2.841       0.919
 490        ( 57.955   71.954)       4.258       0.819
 491        ( 43.818   55.309)       3.493       0.878
 492        ( 34.189   43.561)       2.849       0.919
 493        ( 47.549   59.275)       3.564       0.873
 494        ( 40.023   50.517)       3.190       0.898
 495        ( 54.674   67.238)       3.819       0.854
 496        ( 18.449   28.568)       3.076       0.905
 497        ( 48.014   59.077)       3.363       0.887
 498        ( 39.887   51.269)       3.462       0.880
 499        ( 41.224   52.875)       3.542       0.875
 500        ( 38.399   48.361)       3.028       0.908




--------------------------------------------------------------------------------

PERSON-FIT INDICES FOR CONTINUOUS MODELS
Ferrando, Vigil-Colet, & Lorenzo-Seva (2017) 


Summary Statistics for Person Fit Indices

Indices computed 
	  Weighted Mean-Squared Index (WMSI)
	  Personal Correlation (rp)

            WMSI              rp

Smallest     0.1443           -0.4560
 Largest     3.9343            0.9550
    Mean     1.0109            0.6894
Variance     0.3922            0.0501


Cases with high WMSI (value larger than   1.53) and/or low rp (value lower than   0.65)

Case         WMSI             rp

   4         1.459            0.439  
   5         0.638            0.619  
   6         0.717            0.459  
  11         2.277            0.564  
  16         1.207            0.594  
  19         2.439            0.541  
  20         1.701            0.385  
  21         2.861            0.132  
  23         1.245            0.478  
  25         0.963            0.606  
  26         0.592            0.530  
  28         1.342            0.378  
  31         0.916            0.588  
  33         1.925            0.012  
  34         1.351            0.118  
  35         0.997            0.588  
  41         0.902            0.598  
  45         0.629            0.618  
  49         1.548            0.811  
  52         0.514            0.594  
  57         2.342            0.388  
  58         3.934           -0.109  
  61         2.327            0.186  
  62         1.646            0.376  
  64         1.841            0.628  
  72         0.850            0.464  
  73         0.964            0.590  
  74         0.618            0.636  
  77         0.975            0.609  
  81         1.207            0.644  
  83         1.381            0.058  
  90         1.962            0.409  
  91         1.556            0.706  
  99         1.073            0.582  
 100         1.372            0.289  
 109         0.899            0.641  
 110         1.189            0.593  
 113         0.851            0.624  
 115         2.035            0.438  
 122         1.428            0.297  
 125         1.817            0.234  
 127         1.829            0.389  
 131         0.757            0.579  
 133         0.359            0.637  
 136         1.786            0.374  
 138         0.927            0.544  
 141         2.726            0.577  
 142         0.947            0.642  
 143         0.929            0.588  
 145         0.681            0.542  
 147         0.758            0.650  
 150         2.891            0.367  
 152         2.307            0.530  
 169         1.057            0.601  
 172         3.683           -0.070  
 174         1.398            0.452  
 179         1.328            0.547  
 181         0.728            0.571  
 184         1.795            0.667  
 186         0.931            0.611  
 188         0.678            0.434  
 190         1.997            0.573  
 193         2.080            0.417  
 195         2.562            0.704  
 196         1.406            0.449  
 198         1.155            0.545  
 199         2.626            0.624  
 214         0.615            0.396  
 217         1.389            0.180  
 220         1.557            0.066  
 222         1.182            0.533  
 231         2.612            0.247  
 237         0.641            0.206  
 240         3.246            0.237  
 251         0.704            0.563  
 257         1.481            0.509  
 261         1.386            0.312  
 263         1.146            0.610  
 270         1.173            0.521  
 275         0.924            0.235  
 277         1.730            0.692  
 278         1.516           -0.025  
 280         0.885            0.521  
 285         0.746            0.463  
 286         1.652            0.516  
 287         1.824            0.646  
 288         1.283            0.577  
 292         1.153            0.388  
 294         0.850            0.503  
 295         1.556            0.450  
 300         2.431            0.688  
 302         1.502            0.572  
 303         1.271            0.638  
 306         0.582            0.490  
 307         3.583           -0.110  
 316         1.430            0.629  
 319         1.538            0.815  
 320         2.204            0.307  
 322         1.954            0.384  
 324         1.412            0.146  
 326         1.148            0.304  
 330         2.299            0.754  
 331         0.750            0.620  
 337         1.603            0.674  
 339         2.098            0.712  
 341         2.031            0.100  
 342         1.522            0.346  
 350         1.239            0.281  
 351         1.323            0.585  
 355         1.460            0.454  
 357         1.427            0.370  
 358         1.042            0.144  
 359         1.726            0.507  
 366         0.538            0.424  
 367         2.072            0.480  
 368         1.710            0.488  
 371         3.543            0.053  
 373         0.941            0.604  
 375         1.082            0.546  
 377         0.867            0.571  
 378         2.236            0.089  
 384         1.430            0.541  
 389         1.946            0.717  
 390         0.900            0.602  
 391         0.900            0.602  
 394         1.282            0.516  
 395         3.013            0.329  
 396         1.130            0.411  
 399         2.123            0.659  
 400         0.863            0.644  
 402         2.144            0.736  
 403         1.624            0.666  
 405         1.201            0.397  
 406         1.053            0.549  
 407         1.237            0.649  
 413         1.945            0.781  
 416         1.877            0.856  
 417         3.914            0.272  
 418         1.885            0.471  
 419         0.949            0.515  
 423         1.593            0.516  
 424         1.827            0.464  
 425         1.751            0.496  
 429         0.989           -0.079  
 431         0.727            0.413  
 434         1.632            0.723  
 435         1.657            0.141  
 436         2.001            0.269  
 438         1.613            0.341  
 439         1.212            0.016  
 440         1.585            0.750  
 441         2.417            0.271  
 445         1.427            0.488  
 446         1.460            0.301  
 447         1.285            0.469  
 448         1.646            0.596  
 449         1.834            0.611  
 453         0.963            0.379  
 455         1.421            0.279  
 456         2.014           -0.018  
 458         0.682            0.615  
 459         2.851            0.424  
 460         1.989            0.433  
 463         0.907            0.614  
 466         1.078            0.376  
 468         1.346            0.488  
 469         2.418            0.596  
 470         2.188            0.523  
 475         0.973            0.352  
 476         1.279            0.532  
 477         0.735            0.621  
 481         1.426           -0.092  
 482         1.853            0.475  
 484         1.416            0.405  
 486         1.612            0.656  
 487         0.882            0.624  
 488         1.026            0.481  
 489         1.212            0.246  
 492         0.556            0.501  
 496         3.933           -0.456  
 498         1.460            0.628  
 499         1.692            0.672  
 500         0.831            0.638  


Person-Fit Indices for individuals

Case           WMSI             rp

   1           0.276            0.737  
   2           1.239            0.752  
   3           0.561            0.796  
   4**         1.459            0.439  
   5**         0.638            0.619  
   6**         0.717            0.459  
   7           0.487            0.899  
   8           0.536            0.895  
   9           0.521            0.880  
  10           0.455            0.891  
  11**         2.277            0.564  
  12           0.821            0.834  
  13           0.483            0.756  
  14           0.287            0.906  
  15           0.520            0.761  
  16**         1.207            0.594  
  17           0.915            0.754  
  18           1.496            0.801  
  19**         2.439            0.541  
  20**         1.701            0.385  
  21**         2.861            0.132  
  22           0.300            0.870  
  23**         1.245            0.478  
  24           0.497            0.898  
  25**         0.963            0.606  
  26**         0.592            0.530  
  27           0.721            0.717  
  28**         1.342            0.378  
  29           0.506            0.786  
  30           0.823            0.920  
  31**         0.916            0.588  
  32           0.566            0.758  
  33**         1.925            0.012  
  34**         1.351            0.118  
  35**         0.997            0.588  
  36           0.437            0.947  
  37           0.262            0.890  
  38           0.810            0.877  
  39           1.354            0.722  
  40           0.629            0.940  
  41**         0.902            0.598  
  42           0.641            0.775  
  43           0.371            0.919  
  44           0.753            0.908  
  45**         0.629            0.618  
  46           0.637            0.815  
  47           0.646            0.686  
  48           1.377            0.752  
  49**         1.548            0.811  
  50           0.566            0.842  
  51           1.101            0.857  
  52**         0.514            0.594  
  53           0.911            0.840  
  54           0.839            0.692  
  55           0.482            0.761  
  56           0.307            0.936  
  57**         2.342            0.388  
  58**         3.934           -0.109  
  59           0.918            0.672  
  60           0.911            0.762  
  61**         2.327            0.186  
  62**         1.646            0.376  
  63           0.749            0.833  
  64**         1.841            0.628  
  65           0.754            0.842  
  66           0.342            0.843  
  67           1.262            0.804  
  68           0.558            0.792  
  69           0.267            0.928  
  70           0.740            0.927  
  71           1.015            0.891  
  72**         0.850            0.464  
  73**         0.964            0.590  
  74**         0.618            0.636  
  75           0.684            0.926  
  76           0.788            0.843  
  77**         0.975            0.609  
  78           0.811            0.804  
  79           1.383            0.737  
  80           0.585            0.881  
  81**         1.207            0.644  
  82           1.120            0.809  
  83**         1.381            0.058  
  84           0.458            0.853  
  85           0.382            0.801  
  86           0.468            0.812  
  87           0.651            0.740  
  88           1.206            0.819  
  89           0.650            0.889  
  90**         1.962            0.409  
  91**         1.556            0.706  
  92           1.231            0.804  
  93           1.365            0.747  
  94           0.303            0.893  
  95           0.819            0.914  
  96           0.829            0.811  
  97           0.570            0.935  
  98           0.517            0.805  
  99**         1.073            0.582  
 100**         1.372            0.289  
 101           1.340            0.698  
 102           1.314            0.756  
 103           0.437            0.875  
 104           0.997            0.824  
 105           0.605            0.831  
 106           0.980            0.715  
 107           0.354            0.878  
 108           0.724            0.761  
 109**         0.899            0.641  
 110**         1.189            0.593  
 111           0.386            0.881  
 112           0.666            0.905  
 113**         0.851            0.624  
 114           1.354            0.762  
 115**         2.035            0.438  
 116           0.761            0.831  
 117           0.673            0.808  
 118           0.436            0.891  
 119           0.594            0.760  
 120           0.440            0.764  
 121           0.789            0.760  
 122**         1.428            0.297  
 123           0.553            0.765  
 124           0.352            0.892  
 125**         1.817            0.234  
 126           0.765            0.807  
 127**         1.829            0.389  
 128           0.405            0.851  
 129           0.255            0.931  
 130           0.582            0.653  
 131**         0.757            0.579  
 132           0.967            0.650  
 133**         0.359            0.637  
 134           1.467            0.849  
 135           0.521            0.902  
 136**         1.786            0.374  
 137           0.679            0.763  
 138**         0.927            0.544  
 139           0.479            0.776  
 140           0.847            0.680  
 141**         2.726            0.577  
 142**         0.947            0.642  
 143**         0.929            0.588  
 144           0.468            0.865  
 145**         0.681            0.542  
 146           0.411            0.858  
 147**         0.758            0.650  
 148           0.420            0.890  
 149           0.390            0.840  
 150**         2.891            0.367  
 151           0.761            0.902  
 152**         2.307            0.530  
 153           0.948            0.747  
 154           0.524            0.856  
 155           0.489            0.939  
 156           0.434            0.880  
 157           0.632            0.895  
 158           0.577            0.812  
 159           0.397            0.931  
 160           0.310            0.896  
 161           0.439            0.899  
 162           0.439            0.875  
 163           0.399            0.740  
 164           0.796            0.794  
 165           0.355            0.926  
 166           0.729            0.747  
 167           1.127            0.855  
 168           0.535            0.742  
 169**         1.057            0.601  
 170           0.519            0.911  
 171           0.825            0.854  
 172**         3.683           -0.070  
 173           1.322            0.852  
 174**         1.398            0.452  
 175           0.357            0.751  
 176           0.632            0.701  
 177           1.074            0.843  
 178           0.654            0.809  
 179**         1.328            0.547  
 180           0.480            0.849  
 181**         0.728            0.571  
 182           0.282            0.903  
 183           1.103            0.782  
 184**         1.795            0.667  
 185           0.519            0.804  
 186**         0.931            0.611  
 187           0.544            0.844  
 188**         0.678            0.434  
 189           0.908            0.828  
 190**         1.997            0.573  
 191           1.028            0.786  
 192           0.716            0.866  
 193**         2.080            0.417  
 194           0.684            0.918  
 195**         2.562            0.704  
 196**         1.406            0.449  
 197           0.907            0.676  
 198**         1.155            0.545  
 199**         2.626            0.624  
 200           0.172            0.812  
 201           1.208            0.815  
 202           0.717            0.898  
 203           0.647            0.870  
 204           1.275            0.673  
 205           0.884            0.825  
 206           0.351            0.902  
 207           0.768            0.886  
 208           0.628            0.916  
 209           0.932            0.870  
 210           0.672            0.773  
 211           1.096            0.920  
 212           0.967            0.742  
 213           0.900            0.808  
 214**         0.615            0.396  
 215           1.299            0.718  
 216           0.314            0.680  
 217**         1.389            0.180  
 218           0.543            0.772  
 219           0.421            0.900  
 220**         1.557            0.066  
 221           0.613            0.913  
 222**         1.182            0.533  
 223           0.514            0.829  
 224           0.736            0.899  
 225           0.415            0.803  
 226           0.905            0.691  
 227           1.098            0.794  
 228           0.441            0.824  
 229           0.759            0.784  
 230           0.955            0.721  
 231**         2.612            0.247  
 232           0.215            0.731  
 233           0.996            0.868  
 234           0.671            0.892  
 235           0.371            0.827  
 236           0.841            0.897  
 237**         0.641            0.206  
 238           1.157            0.833  
 239           0.539            0.752  
 240**         3.246            0.237  
 241           0.357            0.916  
 242           0.477            0.950  
 243           0.541            0.770  
 244           0.600            0.838  
 245           0.155            0.731  
 246           0.649            0.850  
 247           0.593            0.702  
 248           0.348            0.782  
 249           0.864            0.740  
 250           0.217            0.934  
 251**         0.704            0.563  
 252           0.998            0.688  
 253           0.653            0.794  
 254           0.262            0.891  
 255           0.390            0.825  
 256           0.375            0.853  
 257**         1.481            0.509  
 258           0.642            0.888  
 259           0.834            0.801  
 260           0.393            0.800  
 261**         1.386            0.312  
 262           0.537            0.806  
 263**         1.146            0.610  
 264           1.023            0.847  
 265           0.753            0.757  
 266           0.279            0.915  
 267           0.342            0.879  
 268           0.558            0.906  
 269           0.622            0.771  
 270**         1.173            0.521  
 271           1.148            0.832  
 272           0.310            0.824  
 273           0.569            0.900  
 274           0.593            0.748  
 275**         0.924            0.235  
 276           0.566            0.951  
 277**         1.730            0.692  
 278**         1.516           -0.025  
 279           0.371            0.893  
 280**         0.885            0.521  
 281           0.610            0.909  
 282           0.628            0.820  
 283           0.452            0.832  
 284           0.651            0.732  
 285**         0.746            0.463  
 286**         1.652            0.516  
 287**         1.824            0.646  
 288**         1.283            0.577  
 289           1.150            0.877  
 290           0.553            0.853  
 291           0.364            0.861  
 292**         1.153            0.388  
 293           1.337            0.741  
 294**         0.850            0.503  
 295**         1.556            0.450  
 296           0.365            0.698  
 297           0.441            0.863  
 298           1.331            0.777  
 299           0.565            0.864  
 300**         2.431            0.688  
 301           0.997            0.840  
 302**         1.502            0.572  
 303**         1.271            0.638  
 304           0.304            0.890  
 305           0.783            0.869  
 306**         0.582            0.490  
 307**         3.583           -0.110  
 308           0.867            0.805  
 309           1.330            0.808  
 310           0.797            0.911  
 311           0.878            0.932  
 312           1.399            0.752  
 313           0.501            0.899  
 314           0.591            0.821  
 315           0.583            0.888  
 316**         1.430            0.629  
 317           0.697            0.860  
 318           0.627            0.853  
 319**         1.538            0.815  
 320**         2.204            0.307  
 321           1.120            0.845  
 322**         1.954            0.384  
 323           1.066            0.921  
 324**         1.412            0.146  
 325           0.813            0.797  
 326**         1.148            0.304  
 327           0.459            0.925  
 328           0.406            0.794  
 329           0.887            0.819  
 330**         2.299            0.754  
 331**         0.750            0.620  
 332           0.664            0.728  
 333           0.636            0.805  
 334           0.280            0.944  
 335           0.821            0.781  
 336           1.137            0.739  
 337**         1.603            0.674  
 338           0.645            0.835  
 339**         2.098            0.712  
 340           1.009            0.757  
 341**         2.031            0.100  
 342**         1.522            0.346  
 343           0.761            0.782  
 344           1.109            0.782  
 345           0.665            0.731  
 346           0.488            0.881  
 347           1.281            0.732  
 348           0.528            0.870  
 349           0.686            0.739  
 350**         1.239            0.281  
 351**         1.323            0.585  
 352           0.725            0.868  
 353           0.470            0.873  
 354           0.745            0.818  
 355**         1.460            0.454  
 356           0.826            0.844  
 357**         1.427            0.370  
 358**         1.042            0.144  
 359**         1.726            0.507  
 360           0.881            0.828  
 361           0.660            0.815  
 362           0.697            0.841  
 363           0.795            0.796  
 364           1.439            0.823  
 365           0.616            0.943  
 366**         0.538            0.424  
 367**         2.072            0.480  
 368**         1.710            0.488  
 369           0.676            0.892  
 370           0.928            0.810  
 371**         3.543            0.053  
 372           0.736            0.723  
 373**         0.941            0.604  
 374           1.202            0.784  
 375**         1.082            0.546  
 376           0.795            0.796  
 377**         0.867            0.571  
 378**         2.236            0.089  
 379           0.372            0.869  
 380           0.532            0.883  
 381           0.317            0.850  
 382           1.412            0.686  
 383           1.411            0.888  
 384**         1.430            0.541  
 385           0.414            0.881  
 386           1.426            0.673  
 387           0.144            0.955  
 388           0.501            0.858  
 389**         1.946            0.717  
 390**         0.900            0.602  
 391**         0.900            0.602  
 392           0.714            0.898  
 393           0.561            0.884  
 394**         1.282            0.516  
 395**         3.013            0.329  
 396**         1.130            0.411  
 397           0.667            0.923  
 398           0.884            0.909  
 399**         2.123            0.659  
 400**         0.863            0.644  
 401           0.742            0.848  
 402**         2.144            0.736  
 403**         1.624            0.666  
 404           0.947            0.867  
 405**         1.201            0.397  
 406**         1.053            0.549  
 407**         1.237            0.649  
 408           1.165            0.833  
 409           0.704            0.744  
 410           0.695            0.696  
 411           1.131            0.782  
 412           1.321            0.817  
 413**         1.945            0.781  
 414           0.882            0.735  
 415           0.810            0.659  
 416**         1.877            0.856  
 417**         3.914            0.272  
 418**         1.885            0.471  
 419**         0.949            0.515  
 420           1.061            0.764  
 421           0.570            0.939  
 422           0.838            0.706  
 423**         1.593            0.516  
 424**         1.827            0.464  
 425**         1.751            0.496  
 426           1.055            0.762  
 427           0.274            0.844  
 428           1.148            0.676  
 429**         0.989           -0.079  
 430           1.058            0.837  
 431**         0.727            0.413  
 432           0.462            0.905  
 433           0.627            0.746  
 434**         1.632            0.723  
 435**         1.657            0.141  
 436**         2.001            0.269  
 437           1.531            0.848  
 438**         1.613            0.341  
 439**         1.212            0.016  
 440**         1.585            0.750  
 441**         2.417            0.271  
 442           0.747            0.710  
 443           1.020            0.886  
 444           1.154            0.863  
 445**         1.427            0.488  
 446**         1.460            0.301  
 447**         1.285            0.469  
 448**         1.646            0.596  
 449**         1.834            0.611  
 450           0.710            0.791  
 451           0.285            0.891  
 452           1.043            0.710  
 453**         0.963            0.379  
 454           1.090            0.812  
 455**         1.421            0.279  
 456**         2.014           -0.018  
 457           0.756            0.744  
 458**         0.682            0.615  
 459**         2.851            0.424  
 460**         1.989            0.433  
 461           0.450            0.816  
 462           0.460            0.774  
 463**         0.907            0.614  
 464           0.229            0.708  
 465           1.464            0.894  
 466**         1.078            0.376  
 467           0.417            0.924  
 468**         1.346            0.488  
 469**         2.418            0.596  
 470**         2.188            0.523  
 471           0.705            0.715  
 472           0.955            0.703  
 473           1.354            0.708  
 474           0.223            0.882  
 475**         0.973            0.352  
 476**         1.279            0.532  
 477**         0.735            0.621  
 478           0.537            0.863  
 479           0.837            0.719  
 480           0.549            0.825  
 481**         1.426           -0.092  
 482**         1.853            0.475  
 483           0.469            0.796  
 484**         1.416            0.405  
 485           1.335            0.664  
 486**         1.612            0.656  
 487**         0.882            0.624  
 488**         1.026            0.481  
 489**         1.212            0.246  
 490           0.448            0.897  
 491           0.735            0.757  
 492**         0.556            0.501  
 493           0.988            0.715  
 494           0.727            0.845  
 495           1.245            0.810  
 496**         3.933           -0.456  
 497           0.897            0.712  
 498**         1.460            0.628  
 499**         1.692            0.672  
 500**         0.831            0.638  

**: Individual with a large Person-Fit Index value

--------------------------------------------------------------------------------

References

Browne, M. (1972b).  Oblique rotation to a partially specified target. British Journal of Mathematical and Statistical Psychology, 25, 207-212.
Buja, A., & Eyuboglu, N. (1992). Remarks on parallel analysis. Multivariate Behavioral Research, 27(4), 509-540.
Choi, J., Kim, S., Chen, J., & Dannels, S. (2011). A comparison of maximum likelihood and Bayesian estimation for polychoric correlation using 

Monte Carlo simulation. Journal of Educational and Behavioral Statistics, 36, 523–549. doi:10.3102/1076998610381398 

Ferrando, P. J., & Lorenzo-Seva U. (2016). A note on improving EAP trait estimation in oblique factor-analytic and item response theory models. 

Psicologica, 37, 235-247.

Ferrando, P. J. (2009). Multidimensional Factor-Analysis-Based Procedures for Assessing Scalability in Personality Measurement. Structural 

Equation Modeling, 16, 10-133.

Harman, H. H. (1962). Modern Factor Analysis, 2nd Edition. University of Chicago Press, Chicago.

Kelley, T. L. (1935). Essential Traits of Mental Life, Harvard Studies in Education, vol. 26. Harvard University Press, Cambridge.

Lorenzo-Seva, U., & Van Ginkel, J. R. (2016). Multiple Imputation of missing values in exploratory factor analysis of multidimensional scales: 

estimating latent trait scores. Anales de Psicología/Annals of Psychology, 32(2), 596-608.

Lorenzo-Seva, U. & ten Berge, J.M.F. (2006). Tucker's Congruence Coefficient as a Meaningful Index of Factor Similarity. Methodology, 2, 57-64.

McDonald, R.P. (1999). Test theory: A unified treatment. Mahwah, NJ: Lawrence Erlbaum.

Mardia, K. V. (1970), Measures of multivariate skewnees and kurtosis with applications. Biometrika, 57, 519-530.

Muraki, E. (1990). Fitting a polytomous item response model to Likert-type data. Applied Psychological Measurement, 14, 59-71.

Mislevy, R.J., & Bock, R.D. (1990). BILOG 3 Item analysis and test scoring with binary logistic models. Mooresville: Scientific Software.

Samejima F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometric Monograph, No. 17. 

Reckase, M. D. (1985). The difficulty of test items that measure more than one ability. Applied Psychological Measurement, 9, 401-412.

Timmerman, M. E., & Lorenzo-Seva, U. (2011). Dimensionality Assessment of Ordered Polytomous Items with Parallel Analysis. Psychological 

Methods, 16, 209-220.

Tucker, L. R. (1951). A method for synthesis of factor analysis studies. Personnel Research Section Report, 984. Washington, D. C.: Department 

of the Army.

       

FACTOR is based on CLAPACK.
 Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., & 

Sorensen, D. (1999). LAPACK Users' Guide. Society for Industrial and Applied Mathematics. Philadelphia, PA

FACTOR can be refered as:
 Lorenzo-Seva, U., & Ferrando, P.J. (2013). FACTOR 9.2 A Comprehensive Program for Fitting Exploratory and Semiconfirmatory Factor Analysis and 

IRT Models. Applied Psychological Measurement, 37(6), 497-498.
 Lorenzo-Seva, U., & Ferrando, P.J. (2006). FACTOR: A computer program to fit the exploratory factor analysis model.Behavioral Research Methods, 

Instruments and Computers, 38(1), 88-91.

For furhter information and new releases go to:
psico.fcep.urv.cat/utilitats/factor 

--------------------------------------------------------------------------------

FACTOR completed

Computing time     :  7.78 minutes.
Matrices generated : 110703233 

Our last advice: Distrust 5% of statistics, and 95% of statisticians. (Cal desconfiar un 5% de l'estadística, i un 95% de l'estadístic.)