FACTOR
  Bibliography
 
 

References

Bentler, P.M. (1977). Factor simplicity index and transformations. Psychometrika, 59, 567-579.

Browne, M. (1972a). orthogonal rotation to a partially specified target. British Journal of Mathematical and Statistical Psychology, 25, 115-120.

Browne, M. (1972b). Oblique rotation to a partially specified target. British Journal of Mathematical and Statistical Psychology, 25, 207-212.

Buja, A., & Eyuboglu, N. (1992). Remarks on parallel analysis. Multivariate Behavioral Research, 27, 509-540.

Clarkson, D. B., & Jennrich, R. I. (1988). Quartic rotation criteria and algorithms. Psychometrika, 53, 251-259.

Cureton, E. E., & Mulaik, S. A. (1975). The weighted varimax rotation and the promax rotation. Psychometrika, 40, 183-195.

Devlin, S. J., Gnanadesikan, R., & Kettenring, J. R. (1975). Robust estimation and outlier detection with correlation coefficients. Biometrika, 62, 531-545.

Devlin, S. J., Gnanadesikan, R., & Kettenring, J. R. (1981). Robust estimation of dispersion matrices and principal components. Journal of the American Statistical Association, 76, 354-362.

Donnelly, T. (1973). Algorithm 462: Bivariate Normal Distribution. Communications of the ACM,
16, 638.

Ferrando, P. J. (2009). Multidimensional Factor-Analysis-Based Procedures for Assessing Scalability in Personality Measurement. Structural Equation Modeling, 16, 10-133.

Ferrando, P. J., & Lorenzo-Seva U. (2016). A note on improving EAP trait estimation in oblique factor-analytic and item response theory models. Psicologica, 37, 235-247.

Harman, H. H. (1962). Modern Factor Analysis, 2nd Edition. University of Chicago Press, Chicago.

Hendrickson, A. E., & White, P. O. (1964). Promax: a quick method for rotation to oblique simple structure. British Journal of Statistical Psychology, 17, 65-70.

Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30, 179-185.

Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187-200.

Kelley, T. L. (1935). Essential Traits of Mental Life, Harvard Studies in Education, vol. 26. Harvard University Press, Cambridge.

Kiers, H.A.L. (1994). Simplimax: an oblique rotation to an optimal target with simple structure. Psychometrika, 59, 567-579.

Lambert, Z. V., Wildt, A. R., & Durand, R. M. (1991). Approximating confidence intervals for factor loadings. Multivariate behavioral research26(3), 421-434.

Lattin, J., Carroll, D.J., & Green, P.E. (2003). Analyzing multivariate data (Pages 114-116). Duxbury Press.

Lorenzo-Seva, U. (1999). Promin: a method for oblique factor rotation. Multivariate Behavioral Research, 34,347-356.

Lorenzo-Seva, U. (2001). The weighted oblimin rotation. Psychometrika, 65, 301-318.

Lorenzo-Seva, U. (2003). A factor simplicity index. Psychometrika, 68, 49-60.

Lorenzo-Seva, U. & ten Berge, J.M.F. (2006). Tucker's Congruence Coefficient as a Meaningful Index of Factor Similarity. Methodology, 2, 57-64.

Lorenzo-Seva, U., Timmerman, M. E., & Kiers, H.A.L. (2011). The Hull method for selecting the number of common factors. Multivariate Behavioral Research, 46,340-364.

Lorenzo-Seva, U., & Van Ginkel, J. R. (2016). Multiple Imputation of missing values in exploratory factor analysis of multidimensional scales : estimating latent trait scores. Anales de Psicología/Annals of Psychology, 32(2), 596-608.

Mardia, K. V. (1970). Measures of multivariate skewnees and kurtosis with applications. Biometrika, 57, 519-530.

McDonald, R. P. (1999). Test theory: A unified treatment. Mahwah, NJ: Lawrence Erlbaum.

Mulaik, S.A. (1972). The foundations of factor analysis. New York: McGraw-Hill Book Company.

Muraki, E. (1990). Fitting a polytomous item response model to Likert-type data. Applied Psychological Measurement, 14, 59-71.

Neuhaus, J. O., & Wrigley, C. (1954). The quartimax method. An analytic aproach to orthogonal simple structure. The British Journal of Statistical Psychology, 7, 81-91.

Olsson, U. (1979a). Maximum likelihood estimation of the polychoric correlation coefficient. Psychometrika, 44, 443-460.

Olsson, U. (1979b). On the robustness of factor analysis against crude classification of the observations. Multivariate Behavioral Research, 14, 485-500. Mislevy, R.J., & Bock, R.D. (1990). BILOG 3 Item analysis and test scoring with binary logistic models. Mooresville: Scientific Software.

Reckase, M. D. (1985). The difficulty of test items that measure more than one ability. Applied Psychological Measurement, 9, 401-412.

Samejima F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometric Monograph, No. 17.

Schmid, J., & Leiman, J. N. (1957). The development of hierarchical factor solutions. Psychometrika, 22, 53-61.

Ten Berge, J.M.F. & Hofstee, W.K.B. (1999). Coefficients alpha and reliabilities of unrotated and rotated components. Psychometrika, 64, 83-90.

Ten Berge, J.M.F., & Kiers, H.A.L. (1991). A numerical approach to the exact and the approximate minimum rank of a covariance matrix. Psychometrika, 56, 309-315.

Ten Berge, J.M.F., & Nevels, K. (1977). A general solution to Mosier's oblique Procrustes problem. Psychometrika, 42, 593-600.

Ten Berge, J.M.F., Snijders, T.A.B. & Zegers, F.E. (1981). Computational aspects of the greatest lower bound to reliability and constrained minimum trace factor analysis. Psychometrika, 46, 201-213.

Ten Berge, J.M.F., & Socan, G. (2004). The greatest lower bound to the reliability of a test and the hypothesis of unidimensionality. Psychometrika, 69, 613-625.

Timmerman, M. E., & Lorenzo-Seva, U. (2011). Dimensionality Assessment of Ordered Polytomous Items with Parallel Analysis. Psychological Methods, 16, 209-220.

Trendafilov, N. (1994). A simple method for procrustean rotation in factor analysis using majorization theory. Multivariate Behavioral Research, 29, 385-408.

Velicer, W. F. (1976). Determining the number of components from the matrix of partial correlations. Psychometrika, 41, 321-327.

Woodhouse, B. & Jackson, P.H. (1977). Lower bounds to the reliability of the total score on a test composed of nonhomogeneous items: II. A search procedure to locate the greatest lower bound. Psychometrika, 42, 579-591.