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1. The unrestricted Factor Analysis model: Some basic results 

 

The Factor Analysis (FA) model can be viewed as a regression model in which the 

independent variables (i.e., the factors) are latent variables, and the predicted variables 

(for example, the answers of a person to a particular set of items in a questionnaire) are 

observed variables. The simplest case is Spearman’s unidimensional model. If Xij 

represents the score of individual i in the observed variable Xj, the unidimensional model 

can be written as: 

ijijjijX   , (1) 

 

where j is the mean of observed variable Xj, j is the regression weight of observed 

variable Xj on the latent variable, i is the non-observable level of individual i on the 

latent variable, and ij is the measurement error associated to individual i in the observed 

variable Xj. The latent variable (that could also be referred to as factor ) is considered to 

be a continuous unbounded variable. In addition, as the observed variable Xj is a linear 

combination of the latent variable , the observed variable Xj is also expected to be a 

continuous unbounded variable. The model makes the usual assumptions in linear 

regression: linearity and homoscedasticity, 

 

2
)|(;)|(

jijijjij XVarXE   , (2) 

 

where εj is the residual or error variance of observed variable Xj. Because factor  is 

non-observable, some additional restrictions are needed to identify the model. A common 

restriction is to scale factor  as a standard variable. Furthermore, in most of the 

procedures we shall discuss here, the observed variables are also scaled as standard 

variables (so that μj=0 and j=1). With this scaling, for a set of m observed variables (i.e., 

j=1…m) in a sample of N individuals (i.e., i=1…N), model (1) gives rise to the correlation 

structure:  

 

ΨΛΛR  '  (3) 
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where R is the correlation matrix between the m observed variables,  is the vector of m 

regression weights (also referred to in the context of factor analysis as factor loadings), 

and  is a diagonal matrix that contains in the diagonal the m error variances associated 

with the observed variables. 

In statistical applications of FA, in which model-data fit is assessed by using inferential 

procedures and standard errors of the estimates are obtained, it is generally assumed that 

the conditional distribution of the observed variables for a fixed value i is normal. A 

stronger additional assumption is that the distribution of factor   is also normal. If both 

these sets of assumptions hold, the joint distribution the joint distribution of the observed 

variables is normal. As in any statistical model, these assumptions are unattainable ideal 

conditions. Experience, however, suggests that in this type of applications the model 

works acceptably well when the observed variables are approximately continuous, with 

unimodal and symmetric distributions (e.g. Ferrando, 1999, Hofstee et al., 1998).  

To close this section, we shall summarize the main assumptions of FA as a basic 

regression model. These assumptions are the main sources of difficulties when the 

dependent (i.e., the observed variables) are item scores. The assumptions are: 

 The regression of observed variable Xj on factor θ is linear. 

 The conditional variance of observed variable Xj is the same for any value of 

factor θ (homoscedasticity). 

 The conditional distribution of observed variable Xj for any value of factor θ is 

normal. 

 

2. Problems in the Factor Analysis model when the observed variables are 

test items 

 

In the type of FA applications that we shall consider in this document, the observed 

variables are item responses based on a binary or a graded format. These variables cannot 

be considered to be continuous-unbounded not even approximately. So, strictly speaking, 

FA is inappropriate. The inappropriateness can clearly be seen if we consider the simple 

case of binary responses that are fitted with the unidimensional model. For the sake of 

simplicity we shall consider here raw item scores with assigned 0 and 1 values (e.g. fail 

and pass).  
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Consider again equation (2). Because factor θ is continuous and unlimited the expected 

item score Xj is also unlimited according to the model. However, if the response is binary, 

its expected value is necessarily bounded between 0 and 1. So, the item-factor regression 

cannot be linear, as the model assumes. Second, and for the same reasons (θ is unlimited 

but Xj is not), the conditional distribution of the residuals can be neither normal nor 

homoscedastic. At the upper end of the trait value, the residuals can only be negative (i.e. 

there is a ceiling effect). So, when going to the upper end the conditional distribution 

becomes negatively skewed with reduced variance. Conversely, when going to the lower 

end, the conditional distribution becomes positively skewed with reduced variances (i.e. 

there is a floor effect). Clearly, the conditional variance decreases when going to the 

extremes. So, none of the three basic assumptions of the FA model – linearity, 

homoscedasticity and conditional normality – is met if the dependent variables are 

discrete and bounded item responses. The accompanying figure shows these results in 

more detail.  

E(X|θ)

θ

1

0

E(X|θ)

θ

1

0

4

 

Regression cannot be linear 

 iijjiij PXP  ,10;)|1(  

Regression cannot be homoscedastic: 

      
iijiijiij XPXPXVar  |11|1|1   
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Figure 1. Problems of linear FA with discrete and bounded item responses 

 

Given the results just discussed, it seems of interest to conjecture what a plausible item-

factor regression for binary responses should be like. Lord (1953) discussed some 

conditions which are shown in figure 2 together with some theoretical curves that fulfil 

them. 

 

 

1. For low enough trait levels, the expected score should be close to 0. 

2. For high enough trait levels, the expected score should be close to 1. 

3. The expected score increases with trait level. 

4. The curve is smooth and has a single inflexion point. 

 
 

Figure 2. A plausible item-factor regression for binary responses (Lord, 1953)  

 

To summarize, when the observed variables are bounded and discrete, their regression on 

factor  is non-linear (possibly S-shaped according to Lord’s conjectures) and 

heteroscedastic. So, the standard FA model is not a correct model, and (at best) it should 

be taken as an approximation. A key point is, then, to assess in which conditions the 

simple linear model can be a reasonably good approximation, mainly as far as purposes of 

item analysis is concerned.  

 

3. The unidimensional (congeneric) model 

3.1. The underlying-variables approach: item factor analysis and the two-parameter Item 

Response Theory model 
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Because the assumptions of the linear model are not tenable for discrete item scores, a 

reasonable alternative is to propose a more plausible model. In psychometrics, this 

proposal was initially made for binary items in which the inadequacies of the FA model 

were most evident. The proposal, which we shall call the Underlying-Variables Approach 

(UVA), gives rise to a curve that fulfils Lord’s conditions. 

 

                          Xj
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                                                                                         i                           

Figure 3.UVA model for binary responses 

 

In the UVA model, each observed score Xij (0 and 1) is considered to arise from the  

dichotomization of an underlying response variable X*j which is both continuous and 

unbounded and which is usually scaled as a standard variable (mean zero and unit 

variance). These assumptions (together with the one mentioned below) establish the first-

level model. Then, the hypothetical latent response variables, which were assumed in the 

first-level model, are assumed to behave according to the linear FA model in equations 1 

to 3 (so, strictly speaking, the FA is the second level model). As we shall see, it is 

important that this two-level structure is taken into account . 

In the first-level model, the mechanism that relates the observed binary item score to the 

underlying response variable is a step process. It is assumed that the observed scores 0 

 

1 
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 T 1 
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and 1 arise as a result of an arbitrary dichotomization of the corresponding underlying 

response variable at a given threshold τj0, such that: 

 

 

 

ijjij

jijij

XifX

XifX

*

0

0

*

1

0








 (4) 

 

The first-level model described so far is the tetrachoric model. The second level model is 

the congeneric FA model which is assumed to hold for X*j, 

 

ijijijX  *
 (5) 

where X
*

ij is the underlying response variable, and ij is its associated model error.  

Now, if the FA assumption of normality in the conditional distributions discussed above 

is used, it follows that the conditional probabilities of scoring 0 or 1 in item j are:  

 

)|0(1)()|1(

)()|0(

0

0

iij

j
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ijj
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
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












 

(6) 

It then follows that the regression of the observed raw score on  is the conditional 

probability of scoring 1. If we now make the familiar transformations, 

j

j

j

j

j

j ba










0
;  , (7) 

where j is the error variance associated with the underlying response variable Xj, and aj 

and bj are the discrimination and location/difficulty indices, respectively. Now, the 

regression becomes the basic item response theory two-parameter normal ogive item 

characteristic curve (ICC, see e.g. Lord, 1980). This curve can be approximated by a 

simpler logistic ogive by using the constant D=1.702 in which case the two curves 

become virtually indistinguishable. 

))(exp(1

))(exp(
))(()|1(

jij

jij

jijij
bDa

bDa
baXP









 . (8) 

From the UVA-FA approach, the item discrimination aj in (7) is a signal-to-noise ratio: 

the numerator is the factor weight (signal) and the denominator is the residual standard 
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deviation (noise). High values of aj indicate that the scores of this item cleanly and 

sensitively reflect the trait levels, so the item is a good indicator or measure of the trait. 

On the other hand, low values indicate that the scores are affected by determinants other 

than the trait level (i.e., the item is a noisy or poor indicator of the trait). The range of aj 

values in many tests is about 0.2 to 3. As for the item location/difficulty bj, we interpret it 

in a threshold sense: it is the trait level at which the probability of giving a correct 

response (or endorsing the item) is .5. In typical-response measurement, bj is the trait 

level which marks the transition from the tendency to respond no to the tendency to 

respond yes.  

The binary item-trait regression is illustrated below for different values of the 

discrimination parameter. Clearly, the normal- ogive curve meets Lord’s requirements. 

Note the role of the discriminating parameter in determining the sensitivity of the item to 

detect variations in the trait level. 

 

 

Figure 4. Item-factor regression related to a binary response 

 

3.2. The underlying-variables approach: Item Factor analysis and the graded response 

model 
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The specific model we shall consider in this section is Samejima’s (1969) normal ogive 

version of the graded response model (GRM). Of the general GRM family, the normal 

ogive version (or its logistic counterpart) has a series of desirable features and is the most 

commonly used in practical applications (Baker, 1992, Samejima, 1969, 1997). 

The UVA uses the same two-level approach as in the binary case. In the first level we 

assume that the observed item response arises as a result of a categorization of an underlying 

response variable. In the second level we assume that the congeneric model holds for these 

underlying responses. The main difference with the binary model is that a graded response 

item with k categories is now characterized by k1 thresholds. So, instead of the first-level 

tetrachoric model we now have the first-level polychoric model.  

For example, Figure 5 shows a graphical representation of the corresponding 

categorization process in a 4-point Likert item.  

 

 

 
Figure 5.UVA model for graded responses 
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For a typical 5-point Likert item, the categorization process is: 
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 (9) 

The FA model in the second level is the same as in the binary case: 

 

ijijijX  *
, (10) 

 

and the parameter transformation is a direct extension of the binary model: 

 

j

jk

jk

j

j

j ba










 ; . (11) 

Note that each item is characterized by a single discrimination parameter and k1 location 

parameters. The discrimination has the same interpretation as in the binary case. 

However, the locations do not. The location bjk is the point on the θ continuum at which 

the probability of scoring in category k or higher is 0.5. This is not a simple interpretation, 

and we believe it is better to view these locations as boundaries that mark the transitions 

between the successive categories. The advantage of using the IRT locations (instead of 

the FA thresholds) is that the IRT locations are on the same scale as θ, so they indicate 

how the item is located on the trait continuum. To obtain information about this issue we 

must assess: (a) the distances between locations and their spread, and (b) its central 

location.  

Finally, the probability of obtaining a score Xk for a given trait level is now 

))(Φ())(Φ()|( 1 jkijjkijij babakXP   (12) 

where Φ is the standard normal c.d.f. which can be approximated by the virtually 

indistinguishable logistic function. Equation (12) is the usual IRT expression of the GRM 

(Samejima, 1969 Baker, 1992). 
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The binary ICC can be generalized in different ways to the graded response case. Here we 

shall make a generalization based on the regression of the raw item score (k=0,1,2..) on θ 

(see for example, Chang & Mazzeo, 1994). In the GRM this regression is: 

)|()|(
1

0

ij

nk

k

i kXPkXE  




 (13) 

where X is the raw score, and nk is the number of response categories. The regression (13) 

is illustrated below in figure 6. As in the binary case, it is nonlinear (S-shaped) and 

heteroscedastic: the conditional distributions become skewed at the ends of the scale with 

reduced variance. This agrees well with the plausibility conditions that Lord established 

in the binary case. 

 

 

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

 

Figure 6. Item-factor regression related to a graded response 

 

3.3. The direct approach: basic results and some comparisons 

 

In the direct approach we treat the discrete and bounded item scores as if they were 

continuous-unlimited variables. So, the linear homoscedastic model in equations (1) and 

(2) is fitted directly to the observed responses (and no underlying response variables are 
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modelled at the first level). Using the correlational FA approach we mostly discuss in this 

report, the differences between the UVA and the direct approach can be summarized as 

follows. In the UVA approach, the correlational FA model in (3) is fitted to the 

tetrachoric or polychoric correlation matrix, which is the matrix derived from the first-

level model. In contrast, in the direct approach no first-level model is considered, and the 

FA model (3) is directly fitted to the product-moment inter-item correlation matrix.  

As discussed above, direct modelling is, at best, as an approximation. Therefore, the 

conditions in which the linear approximation can be expected to be reasonably correct 

should be assessed. This point has been addressed in theoretical research (Lord, 1952, 

1953), empirical research by using simulation (Olsson, 1979, Muthén & Kaplan, 1985), 

and applied research (Ferrando, 1999, Hofstee et al. 1998), and the results are consistent. 

The linear model tends to work rather well when (a) the discriminating power of the items 

is moderate or low, and (b) the items have no extreme locations. In the graded-response 

case, condition (b) is obtained when the thresholds are centred about the population mean 

of θ and the distances between thresholds are similar. If this is so, the marginal 

distributions of the items are unimodal and approximately symmetrical (see Muthén & 

Kaplan, 1985). Overall, if conditions (a) and (b) are met, it follows that the item-trait 

regressions are essentially linear and homoscedastic for the range of θ that contains most 

of the respondents, and this is the reason why the linear model is expected to be a good 

approximation. Conversely, the UVA is expected to outperform the direct approach when 

the items are both extreme and highly discriminating. Extreme items, especially with 

skewed distributions that have opposite signs (e.g. very easy and very difficult items), 

lead to differential attenuations of the product-moment correlations with respect to the 

polychoric correlations, and this result leads to biased loading estimates that reflect more 

the extremeness of the item distribution than the strength of the item-factor relation. If, in 

addition, the items are highly discriminating, the item-factor relations become markedly 

nonlinear. Overall, in the case of extreme and highly discriminating items additional 

curvature factors are needed to explain the nonlinear item-factor relations (see McDonald 

& Alhawat, 1974; in the traditional FA literature these factors were known as difficulty 

factors).  

To sum up, if we factor-analyze an essentially unidimensional item set in which the items 

are strongly skewed in opposite directions and highly discriminating, two types of 

distortions are expected to arise: (a) spurious evidence of multidimensionality, due to the 



Unrestricted item factor analysis and some relations with Item Response Theory 

 

  
Pere J. Ferrando & Urbano Lorenzo-Seva  

 
  

13 

need of additional curvature factors that have no substantive interpretation; and (b) 

differential attenuation of the loadings on the content factor.   

A second discussing is whether using the wrong linear model is of any interest even if it 

provides a reasonable good approximation to the data. In other words, why not always use 

the (a priori) more correct UVA-based IRT model. Two points must be considered here. 

First, the ogive curves implied by the UVA, although more plausible than the straight 

line, might still differ from the ‘true’ item traces (as estimated, for example, using 

nonparametric smoothed regression). This point might explain some empirical results in 

which the wrong linear model fitted the smoothed ICC better than the theoretically 

superior UVA model (Ferrando, 2002, 2004). As for the second point, assume that the 

linear and non-linear models provide similar results in terms of model–data fit. Then the 

linear model has some advantages derived from its simplicity: (a) it is more easily 

interpretable, and (b) it is more likely to lead to more stable solutions. As far as this issue 

is concerned we note again a basic result: in the linear approach there is only one level of 

analysis. So the basic product-moment matrix is expected to be more stable than the 

tetrachoric/polychoric matrix, and this greater stability in turn is expected to lead to more 

stable item parameter estimates.  

In the UVA case, the first level model (i.e. the tetrachoric/polychoric model) is potentially 

problematic. First, it makes strong assumptions (normal response variables underlying the 

observed scores) that might be incorrect. Second, the tetrachoric/polychoric correlations 

are far less reliable and stable than the product-moment correlations obtained from 

continuous data and, the more extreme the variables and the smaller the sample, the more 

unstable they are (McNemar, 1969). In the binary case Guilford and Fruchter (1973), and 

McNemar (1969) noted that, at the very least, twice the sample size must be used for the 

tetrachoric estimate to be as accurate as the corresponding product-moment, and they advise 

using samples of at least 200-300 observations. To sum up, we note that if the first level 

model is incorrect, the second level model (i.e. the item FA in the strict sense) cannot be 

correct. Furthermore, if the tetrachoric/polychoric estimates at the first level are unreliable, 

the factor loading estimates obtained from the first level estimates would be even less 

reliable.  

To summarise the material in this section, in figures 7 and 8 we provide some 

guidelines/suggestions regarding the use of the linear or the UVA model. 
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1. Linear FA is likely to be a good approximation if: 

 Items are distributed symmetrically. 

 Items are not highly discriminative. 

2. These points can be checked by conventional item analysis, using the standard 

difficulty and discrimination indices. 

3. If many items are extreme and highly discriminating, it is more convenient to use 

non-linear FA (if data permits). 

 

Figure 7. Linear vs. non-linear (UVA) Factor Analysis 

 

 

 

1. Check whether your sample is large enough to obtain accurate 

tetrachoric/polychoric estimates.  

2. Assess the distribution of the item scores, particularly skewness, and the item-total 

correlations (i.e. the classical item discriminations). 

3. If possible, fit both the linear and the UVA models and compare the results in 

terms of: 

 Goodness of model-data fit 

 Estimated factor loadings 

4. Decide which approach is more appropriate for your data. 

 

Figure 8. A suggested approach 

 

 

3.4. Parameter estimation and assessment of model-data fit 

 

In the direct approach based on the linear model (equations 1 to 3), the parameters of 

most interest are the factor loadings λj and residual variances σ
2

j which, as discussed 

above, are estimated from the sample inter-item product-moment correlation matrix 

according to the structure in equation (3).  

In the nonlinear UVA model, parameters are estimated from the bivariate 

tetrachoric/polychoric tables between pairs of item scores. In the simplest and most usual 

approach that we shall consider here (see e.g. Mislevy, 1986), the item thresholds (τjk) are 
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estimated from the marginals of the table, and the polychoric correlations are estimated 

from the joint frequency cells. Next, the usual FA of the polychoric correlation matrix 

according to the structure (3) provides the estimates of the loadings (αj) and of the 

residual variances (σ
2
ωj). Once the estimates have been obtained, they can be re-

parameterized using equations (7) or (11) to put the model in the most usual IRT form. 

This approach is called the heuristic solution (Bock & Aitkin, 1981).  

For both approaches, we shall now discuss two estimation procedures that are 

implemented in FACTOR to fit the factor model in equation (3): Maximum Likelihood 

(ML) and Unweighted least squares (ULS). 

For item scores that can be treated as (approximately) continuous and which are fitted 

with the direct approach, ML estimation of the item parameters is efficient and can be 

regarded as theoretically optimal. If the ML procedure converges properly, and the joint 

distribution of the variables is (approximately) normal, then the measures of fit based on   

the chi-squared exact-fit test and the indices of fit derived from it are correctly 

interpretable. However, some points must be taken into account when interpreting ML 

estimates and model-data fit results. For these results to be approximately correct, two 

basic conditions are needed. First, the item scores must have a sizable number of points 

and symmetric, normal-like distributions. Second, the model must be a good 

approximation so that the misspecification error is not larger than the random sampling 

error. Most real data does not fulfil these conditions. 

Under the UVA model, ML estimation can be used in some cases but it is important to 

know that some results will not be correct (see Mislevy, 1986). The tetrachoric/polychoric 

correlations are pairwise ML estimates of the population correlations. However, the 

polychoric matrix is not a ‘true’ product-moment correlation matrix. Furthermore, the 

pairwise estimation in many cases produces a matrix that is not positive definite and, 

when it does, ML estimation is not feasible. If estimation is feasible and converges 

properly, the parameter estimates are expected to be unbiased (provided that the degree of 

misspecification is small). However, the standard errors are unreliable and the chi-square 

and derived indices are expected to be upwardly biased. 
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Pros Cons 

 Optimal in the statistical sense (efficient) 

 Provides standard errors and inferential 

procedures for assessing model data fit 

 Requires continuous-unbounded variables 

 Inferential interpretation is based on the 

normality assumption 

 The degree of model misspecification must be 

small 

 The procedure can be unstable 

Figure 9. Pros and contras of ML estimation 

 

The simpler ULS estimation procedure is not theoretically optimal (as is ML) but has 

important advantages. First, it does not require any distributional assumptions. Second, it 

is quite robust: usually the ULS solution converges when the ML solution does not. 

Third, in complex solutions, which are not exact but only approximately correct (and 

models are never correct with real data), ULS tends to provide less biased estimates of the 

true parameter values (e.g. Briggs & MacCallum, 2003). Given these advantages, ULS 

seems to be an appropriate choice especially for the case of large models and not too large 

samples (and this choice refers to both the direct approach and the UVA). Furthermore, as 

we discussed above, the statistical assumptions which ML makes are not correct in UVA 

analysis. For this reason, ULS is our recommended choice for the UVA analysis of 

tetrachoric and polychoric matrices in FACTOR. When used with these matrices it tends 

to provide accurate estimates even when models are large (Lee, Zhang & Edwards, 2012). 

In fact, some simulation studies suggest that ULS provides better estimates than far more 

complex and theoretically superior procedures (Knol & Berger 1991, Parry & McArdle, 

1991). 

The shortcomings of ULS are that (a) it uses limited information and (b) provides neither 

standard errors for the loadings nor a rigorous test of exact and/or approximate fit based 

on the chi-square distribution. As for the second point, however, approximate closed-form 

standard errors can be obtained for both the direct approach and the UVA (Lee et al., 

2012). As for the test of fit, if the variables are treated as continuous, then a ULS-based 

chi-square test and derived indices can be obtained by using normality assumptions (see 

Harman, 1976).  
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Pros Cons 

 Simple and robust 

 Does not make distributional assumptions 

 ULS estimates tend to outperform ML 

estimates when the model is misspecified 

(e.g. minor factors) 

 Statistically non-optimal  

 Provides neither standard errors nor inferential 

procedures for assessing model data fit 

Figure 10. Pros and contras of ULS estimation 

 

We turn now to model-data fit assessment, and we shall discuss two general measures of 

fit that are implemented in FACTOR. These measures are perfectly valid for any 

estimation procedure, including indeed ULS estimation. The first is the gamma-GFI index 

initially proposed by Tanaka and Huba (1985) and latter implemented in the LISREL 

programs. The gamma-GFI measures the relative amount of variance-covariance 

(correlation in our case) in the empirical correlation matrix that is accounted for by the 

fitted model. It can be regarded as an absolute index of fit with an interpretation similar to 

that of the multiple R
2
 in regression analysis.  

rr'

r'r ˆˆ
GFI  (14) 

 

where r̂ and r are two vectors that contain the reproduced and the observed correlations, 

respectively. 

The second index is the root mean square of the standardized residuals (RMSR-z), an 

absolute descriptive index that measures the average size of the residual correlations once 

the prescribed model has been fitted.  
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where ijr̂ are the reproduced correlations, and rij are the observed correlations. The usual 

ad-hoc RMSR-z reference value for considering model-data fit to be acceptable is 0.05. In 

FACTOR, however, we propose to use instead a reference value that has a stronger 

rationale and which was first proposed by Kelley and Thurstone in 1935 (see Harman, 

1976). This value is
N

1  , which is (approximately) the standard error of a zero 
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correlation for a sample size of N. So, for a sample of N=300, the standard error of a zero 

correlation is 0.06. Now if the RMSR-z is about 0.06 or less, we can consider that, on 

average, the residual correlations once the model has been fitted do not significantly 

depart from zero, so the prescribed model is acceptably correct. Indeed this is a very 

crude criterion for deciding whether the model is appropriate and does not take into 

account such other determinants as the size of the model. Experience, however, suggests 

that in practical applications Kelley’s criterion works as well (or even better) as more 

rigorous and exact criteria. 

In a practical situation, independently of the factorial model that is chosen (direct 

approach or UVA) and the method of estimation (ML or ULS), we believe that it is very 

important to inspect the distribution of the residuals (preferably the standardized residuals 

when assessing model-data fit). As McDonald and Ho (2002) noted, a given degree of 

misfit can arise because (a) there are a limited number of misspecifications that give rise 

to a few large discrepancies; or (b) there is a general scatter of discrepancies not 

associated with any particular misspecification. This information, which is provided by 

FACTOR, is important for possible model modifications and is not provided by the 

overall scalar-valued indices. In a well-fitting model, the distribution of the standardized 

residuals is expected to be symmetrical, bell-shaped and centred about zero, with no 

definite clusters that would suggest large misspecifications.  

 

4) The multidimensional model 

 

In the rest of the report, we shall consider the situation in which the item responses are 

(partly) determined by more that one trait or common factor. Because the resulting model 

is the same for any number of common factors equal to or greater than two, for 

illustrative purposes we shall mostly discuss the simplest case of two factors. 

Most of the results discussed in the sections above apply to both the unidimensional and 

the multidimensional model. More specifically, the results concerned with the following 

topics are general results that do not depend on whether the analysis is unidimensional or 

multidimensional: (a) the problems that arise when discrete and bounded item responses 

are analysed; (b) the distinction between the direct linear approach and the nonlinear 

UVA and the conditions in which one or another are more appropriate; and (c) the 

discussion about estimation procedures and estimation or model-data fit. For this reason, 

in the rest of the report we shall only discuss some extensions to the parameterization and 
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interpretation of the models and several multidimensional solutions that are useful in item 

analysis. 

 

4.1 The direct approach 

The linear model with multiple common factors, also known as Thurstone’s model, is a 

direct extension of Spearman’s congeneric model in equation (1). For example, a 

bidimensional model (i.e., two factors are estimated from the mean vector and the 

variance/covariance matrix), is expressed as 

ijijijjijX   2211  (16) 

where j1 and j2 are the regression weights of observed variable Xj on each latent 

variable (also known as factor loadings), and  i1 and i2 are the non-observable level of 

individual i on each latent variable. Note that the assumptions of linearity, 

homoscedasticity and normality in the conditional distributions that were made in the 

unidimensional model still hold. The scaling that we shall consider from now on is also 

the same in both cases: both the dependent variables and the common factors are scaled 

as standard variables.  

The key point in the multidimensional extension (16) is whether the common factors are 

related or not. If the factors are uncorrelated (orthogonal solution), the standardized factor 

loadings are still interpreted as variable-factor correlations. When the factors are 

correlated, the solution is oblique. In this case the loadings are no longer item-factor 

correlations but rather standardized regression weights (i.e. Beta weights). Conceptually 

each loading now measures the impact of the corresponding factor on the item score when 

the remaining factors are still constant. The orthogonal vs. oblique distinction is clearly 

seen in the correlation structures derived from equation (16). They are: 

diagonalOrthogonal

diagonalOblique





;':

;':





R

R
 (17) 

where Φ is the inter-factor correlation matrix, and Λ is the factor pattern. In the 

unidimensional case, Λ is a column vector of dimension items × 1. In the 

multidimensional case it is a matrix of dimension items × factors. Figure 11 provides 

more details regarding the correlational structure derived from the multidimensional 

model. 
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Figure 11. Multidimensional factor analysis model 

 

4.2 The UVA approach: the multidimensional two-parameter model 

As in the unidimensional case, the multidimensional two-parameter model (M2PM) 

allows an FA parameterization and an IRT parameterization. Under the FA 

parameterization and for p common factors, each binary item is characterized by a single 

threshold and p loadings or weights. The threshold has the same interpretation as in the 

unidimensional case. However, as in the direct approach, the loadings can only be 

interpreted as correlations in the case of uncorrelated factors. In the correlated-factors 

case, the loadings are interpreted standardized regression (i.e. Beta) weights. We note 

that, under the UVA approach, the correlations or the Beta weights refer to relations 

between the factors and the hypothetical latent response variables that underlie the 

observed item responses. 

The most usual IRT parameterization of the M2PM is: 

j

j

j

j

jl

jl da
 





 0
;  , (18) 

where j is the error variance associated to the underlying response variable Xj, and ajl 

and dj are the discrimination and location indices, respectively. So, each item is 

characterized by a single location dj and p discriminations ajl. The dj location is usually 

termed as the intercept, and is related to the difficulty of item Xj although it is not strictly 
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a difficulty parameter and has a complex interpretation. The discrimination ajl has a 

similar interpretation as in the unidimensional case: it is related to the slope of the item 

response surface in the direction of the l axis. More conceptually, it indicates the 

discriminating power of the item in the direction of the l factor (see Reckase, 2009). 

Reckase (2009) has proposed two additional item parameters – multidimensional 

difficulty and multidimensional discrimination – that attempt to clarify the IRT 

interpretation of the item estimates. They are defined as 

 





r

l

jlj
m

l

jl

j

j aMDISC

a

d
MDIF 2

2

; . 
(19) 

 

The multidimensional difficulty (MDIF) of item Xj is the distance in the space of the p 

factors from the origin to the point of the steepest slope, and the direction is taken as the 

direction of greatest slope. It has essentially the same interpretation as the difficulty 

parameter in the unidimensional case (i.e. the same units: easy items have large negative 

values and difficult items have large positive values). 

The multidimensional discrimination (MDISC) of item Xj reflects the overall 

discriminating power of the item for the best combination of the factors, where best is 

understood as the combination which provides the maximum discrimination. Except for 

items that are factorially pure, the overall discrimination will be larger than any of the 

single discriminations ajl. 

 

4.3 The UVA approach: the multidimensional GRM 

The IRT parameterization of this model has not been developed to the same extent as in 

the binary model (see Reckase, 2009). So, we shall use here only the FA 

(threshold/loading) formulation already discussed. The thresholds are the same as in the 

unidimensional case (see equation 9). The interpretation of the loadings is the same as 

that given at the beginning of section 4.2.  
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4.4. Some useful multidimensional semi-confirmatory solutions 

 

4.4.1. The canonical solution and applications 

The canonical solution (Harman, 1976) is a mathematically well defined 

multidimensional FA solution in which the factors are orthogonal, and each successive 

factor accounts for as much common variance as possible. More specifically, in each 

successive factor the quantity that is maximized is the sum of the squared weights on this 

factor. The unrotated principal-axes solution, for example, is a canonical solution. In 

FACTOR, all the unrotated solutions are in the canonical form. So, a canonical solution 

in p factors is obtained by specifying rotation: none in FACTOR. 

The canonical solution is generally considered to be arbitrary and uninterpretable. 

However, we do not agree with this view. The canonical solution can be very useful for 

constructing a unidimensional test. The starting point for this to be so is a strong core of 

unidimensional items which serves as basis for making the process of item selection 

feasible (Lumsden, 1961). Suppose that a two-factor canonical solution is fitted to a 

complete set of items which are intended to measure a single solution. Furthermore, 

assume that the items are scored in the same direction of the trait intended to be 

measured.  

If the item set (a) behaves as essentially unidimensional, and (b) reliably measures the 

trait, then the first canonical factor will exhibit a positive manifold pattern (all the 

loadings on this first factor will have the same sign) in which the magnitude of the 

loadings will be substantial for all of the items. Furthermore, all the loadings on the 

second canonical factor will be close to zero. These expected conditions allow us to 

discard poorly functioning items: those items that have non-substantial loadings on the 

first factor (i.e. they poorly measure the intended trait) and/or those items that have 

substantial loadings on the second factor (i.e. they are impacted by determinants other 

than the ones the trait intended to measure). In particular, item doublets or triplets or 

extreme items (if a direct-approach solution is fitted) are usually very well identified by 

their substantial loadings on the second canonical factor. 
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 It is an orthogonal solution in which each 

successive factor accounts for as much variance as 

possible 

 It is equivalent to an unrotated principal-axes 

solution 

 It is particularly useful for item selection and 

construction of a unidimensional test. 

 

Figure 12. Definition of a canonical solution 

 

In a canonical solution, after the general first factor has been estimated, the orthogonality 

constraint implies that all the items must have both positive and negative loadings on the 

subsequent factors. The resulting bipolarity allows the differences between item groups to 

be interpreted. In this way, the column patterns of the successive factors allows group 

factors (i.e. groups of factors that share specificities) to be identified. 

 

4.4.2. The Bi-factor solution 

As discussed at the end of the section above, in many item sets that are intended to 

measure a single trait, there are often sub-sets of items that share specificities (e.g. 

parcels, common expressions, similar required answers). These specificities might explain 

response variance beyond the common factor that all of the items intend to measure. 

Thus, from an FA perspective, the data is multidimensional even when all of the items 

clearly measure a common dimension. 

The bi-factor solution (see e.g. Reise, Morizot & Hays, 2007) is a particular FA 

specification which is multidimensional but which is able to reflect the essential 

unidimensionality of the data. This solution prescribes a common, general factor which 

reflects what is common in all of the items. In addition, a series of orthogonal group 

factors model the item specificities. Frequently, these additional orthogonal factors are 

usually interpreted as nuisance dimensions. However, in a clear bi-factor solution in 

which the loadings on the general factor exhibit a positive manifold, the goal of 

measuring a single common dimension can still be retained while the unwanted variance 
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due to the specificities is controlled. Figure 13 describes a hypothetical bi-factor pattern 

with a general first factor and two group factors: the asterisks indicate loadings that are to 

be freely estimated, whereas the remaining loadings are expected to be zero.   

 

 

 
Figure 13. A hypothetical target matrix for a bi-factor solution 

(A general factor and two group factors) 

 

The bi-factor solution can be viewed as a more confirmatory evolution of the canonical 

solution described in the section above. Indeed, in the canonical solution the group factors 

are identified by the bipolar patterns that emerge in the successive (more exploratory) 

Factors. In contrast, in the bi-factor solution, the group factors are prescribed in advance 

(more confirmatory).  

The bi-factor solution can be restricted or semi-restricted (Reise, Moore & Haviland, 

2010). Here we shall only consider the semi-restricted approach, which is the one 

available in FACTOR. It consists of two steps: (a) defining a target matrix, and (b) 

rotating the initial FA solution to the position which minimizes the sum of squared 

discrepancies between the prescribed target and the rotated solution (i.e., Procrustean 

rotation). As Browne (1982) explains, the target matrix reflects only partial knowledge of 

what the pattern should be, so each element in the pattern can be treated as specified (zero 

loading) or unspecified (*). In the bi-factor case all the loadings on the first factor are 

unspecified whereas zero loadings are set on the remaining columns to identify the group 

factors. Figure 13 shows a target matrix that describes the expected bi-factor solution in a 

set of 11 items: the 11 items are mainly unidimensional (Factor 1); the first 5 items share 
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a common specificity (Factor 3); and (c) the last 6 items share a common specificity 

(Factor 2). 

 

4.4.3. The independent-cluster basis 

Most prescribed solutions in confirmatory factor analysis are, in fact, independent-cluster 

(I-C) solutions (see McDonald, 1999), defined by the property that each variable has a 

large loading on just one factor and zero loadings on the remaining factors. In FA 

terminology this type of variable is termed factorially simple or marker (because it 

defines only one factor). So, the I-C solution (which is usually prescribed in confirmatory 

factor analysis) is one in which all the variables are factorially simple. 

The I-C solution described above is generally too restrictive for real data, especially if the 

variables are test items (see Ferrando & Lorenzo-Seva, 2000). More specifically, many 

personality and attitude items are actually factorially complex. So, an ideal I-C solution in 

which none of the items in the test is factorially complex is unrealistic. On the other hand, 

it is reasonable to assume that, in a multidimensional test, for each factor there will be a 

nuclear subset of factorially simple items that can clearly define the factor (i.e. markers). 

McDonald (2000, 2005) considered a specific requirement of this type in which there are 

at least 3 markers per factor (uncorrelated factors) or 2 markers per factor (correlated 

factors). He called this solution the independent-cluster basis (I-CB). An I-CB condition 

is sufficient to identify a solution with no rotational indeterminacies, and is very 

advantageous in terms of interpretation. 

As in the bi-factor case, the I-CB solution can be restricted or semi-restricted. The semi-

restricted procedure for fitting an I-CB solution is the same as the one used in the bi-

factor case. For each marker, the target matrix in this case specifies zeros in the loadings 

corresponding to the factors not defined by the marker item. The remaining loadings are 

left unspecified. Figure 14 shows a target matrix for fitting an I-CB solution in a set of 11 

items that are expected to be determined by three correlated factors: items 1 and 2 are 

defined as markers of the first factor (F1); items 5 and 6 are defined as markers of the 

second factor (F2); items 9 and 10 are defined as markers of the third factor (F3); finally, 

items 3, 4, 7, 8, and 11 are the items that are not defined as markers of any particular 

factor and so they are allowed to be factorially complex.  
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Figure 14. A hypothetical target matrix for a semi-restricted 

independent-cluster-basis solution (two markers per factor) 

 

The semi-restricted approach for obtaining a bi-factor or an I-CB solution are summarized 

in Figure 15. 

 

 

 Define a target matrix reflecting partial knowledge 

of what the pattern should be. 

 Rotate an arbitrary solution to the position that 

minimizes squared discrepancies between the target 

and the rotated solution. 

 

 

Figure 15. Semi-restricted approach for obtaining a bi-factor or an ICB solution 
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Recommended further readings 

 

McDonald (1999, in the references list) for sections 2, 3.1, 3.2. 3.3, 3.4, 4.1, 4.2, 4.3 and 

4.4. 

 

Mislevy (1986, in the references list) for sections 2, 3.1, 3.2. 3.3, 3.4, 4.1, 4.2, and 4.3. 

 

Muthén  (1993,  in the references list) for sections 3.1, 3.2, and 3.4. 

 

Reckase (2009, in the references list) for sections 4.2 and 4.3. 

 

Reise, Morizot & Hays (2007, in the references list) for sections 4.4. 
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